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ABSTRACTWe present an eÆient Bayesian online learning algorithmfor lustering vetors of binary values based on a well knownmodel, the mixture of Bernoulli pro�les. The model in-ludes onjugate Beta priors over the suess probabilitiesand maintains disrete probability distributions for lusterassignments. Clustering is then formulated as inferene in afator graph whih is solved eÆiently using online approx-imate message passing. The resulting algorithm has threekey features: a) it requires only a single pass aross the dataand an hene be used on data streams, b) it maintains theunertainty of parameters and luster assignments, and )it implements an automati step size adaptation based onthe urrent model unertainty. The model is tested on anarti�ially generated toy dataset and applied to a large salereal-world data set from online advertising, the data beingonline ads haraterized by the set of keywords to whih theyhave been subsribed. The proposed approah sales well forlarge datasets, and ompares favorably to other lusteringalgorithms on the ads dataset. As a onrete appliationto online advertising we show how the learnt model an beused to reommend new keywords for given ads.
1. INTRODUCTIONClustering data based on some notion of similarity is aproblem that arises frequently in many data analysis tasks[3℄. Our interest in lustering stems from the need to lusteronline advertisements. Large online advertisers have reposi-tories of ads available that subsribe to millions of di�erentkeywords to be mathed to a given searh query. When it
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omes to analyzing this data, it is useful to be able to groupthe individual data points into ategories of related onepts.For example, advertisements ould be grouped into ate-gories suh as automobiles, travel, �nanial servies, and soon. Advertisers reating the ads are not required to speifywhih ategory an ad belongs to, instead they provide a setof keywords whih desribe the ad. An algorithm whih andisover these ategories and assign advertisements to themis therefore required in order to be able to explore the datain a strutured way. In priniple this ategorization ould besolved by a supervised lassi�ation sheme, but this wouldrequire manual labeling of a signi�ant portion of the data,while an unsupervised lustering requires no labels at all.Furthermore, a supervised lassi�er would operate on a pre-de�ned and �xed set of possible labels, whereas unsupervisedtehniques are free to reate whatever ategories best �t thedata. An unsupervised grouping thus seems bene�ial forthis problem.In this paper we demonstrate a new way of lustering datathat omes in the form of binary vetors. The method ispartiularly suitable for working on very large olletions ofads. The aim is to develop an online lustering method that\touhes" eah data point (in our ase, eah ad) only one.Saling behavior that goes beyond this bare minimum istoo ostly for the large orpora typial in web appliations.Furthermore, the kind of data enountered in typial webappliations is inherently ambiguous. Consider, for exam-ple, an ad about ar insuranes and the question of whetherto assign it to the luster of ar related ads, or to the lusterof �nanial servies ads. Hard assignments to lusters, be itduring model learning or when assigning new data to lus-ters, will neessarily fail to apture suh ambiguities, andhene probabilisti methods are alled for.The approah proposed here is based on a mixture ofBernoulli pro�les (produts of Bernoulli distributions) [10℄.Traditionally the optimal value of the model parameters formixture models is inferred by maximum likelihood [11℄, anda very popular tehnique is the expetation-maximization(EM) algorithm. A detailed treatment of the EM algorithmapplied to mixtures of Bernoulli pro�les an be found in [4,



Set. 9.3℄. Unfortunately, maximum likelihood learning isimpratial for large sale datasets. Multiple passes throughthe entire dataset are required at a prohibitive omputa-tional ost. Additionally, inferene by maximum likelihoodrequires a very areful initialization to avoid being trappedin loal optima.This work proposes using Bayesian inferene [4℄. Insteadof estimating the point value of the model parameters thatmaximize the likelihood, the parameters of interest are treatedas belief variables with assoiated distributions. Given thedata, inferene onsists of omputing the parameters' pos-terior distributions, whih apture the unertainty abouttheir true values. The probabilisti nature of the underlyingmodel has a number of advantages:1. The quanti�ation of unertainty allows for a moreareful interpretation of learnt parameter values.2. Known model unertainty an drive experimental de-sign and ative learning.3. During online learning, the known unertainty helpsautomatially adapt the e�etive learning rate for eahparameter individually, and allows to ontrol the mem-ory onsumption of the model by pruning non-informativeparameters.4. At any point data an be generated from the model bysampling.The model is expressed using fator graphs, a onvenientrepresentation for fatorizing probabilisti models. Infer-ene is ahieved by means of message passing [4, Chap. 8℄.Message passing on fator graphs allows one to easily use anapproximate \online" inferene sheme. The datapoints areproessed one by one, starting from an empty model, andonly a single pass through the data is required. To be able toope with very large datasets, several further omputation-ally eÆient approximations are proposed. For example, theposteriors for rare features (in the ase of ads, this would berarely used keywords) are represented by using shared pa-rameters. Finally, the fator graph representation togetherwith the \loal"message passing lends itself to a straightfor-ward paralellisation of inferene aross di�erent subsets ofthe data.The paper is organized as follows: The mixture of Bernoullipro�les model is desribed in Set. 2. Bayesian inferenewith message passing on a fator graph is detailed in Set. 3,as well as the online approximate inferene sheme. Parallelinferene is disussed in Set. 4. Performane is evaluated inSet. ??. Finally, Set. 6 explains how the model proposedan be used to suggest additional relevant keywords for adsto subsribe to.
2. PROBLEM SETTING AND MODELWe onsider a set of N objets, where the i-th objet ~xi isdesribed by a D-dimensional vetor of binary variables. Inour onrete appliation, these objets are online ads in paidsearh, desribed by the set of keywords to whih they sub-sribe. There are a total of D unique keywords, and vetor~xi ontains a 1 for those keywords that the i-th advertise-ment has subsribed to: If the i-th advertisement subsribedto the d-th keyword, then xid = 1; else xid = 0.

The model we propose assumes that the keyword vetor ofan ad is generated by one of K lusters, or mixture ompo-nents. Eah ad ~xi has a variable i 2 f1; : : : ; Kg assoiatedwith it that indiates the index of the luster to whih thead belongs. If the i-th ad belongs to luster j then i = j.Within a luster, ads subsribe to keywords following inde-pendent Bernoulli probability distributions. If the i-th adbelongs to luster j then the probability that it subsribesto the d-th keyword is given by tjd = p(xid = 1ji = j). Asa result, the probability that the i-th ad belongs to lusterj is given by a luster-dependent Bernoulli pro�le:p(~xiji = j) = DYd=1 tjdxid(1� tjd)1�xid :Whih luster an ad belongs to is unknown a priori, andthat unertainty is aptured by the prior probability thatthe i-th ad (or in fat any other ad) belongs to luster j:�j = p(i = j). If the global luster assignment priors f�jgand the probabilities of subsribing to keywords ftjdg areknown, the sampling distribution of the model is given by amixture of Bernoulli pro�les:p(~xijftjdg; f�jg) = KXj=1 p(i = j) DYd=1 p(xidji = j; tjd)= KXj=1 �j DYd=1 tjdxid(1� tjd)1�xid : (1)Sampling an ad from this model involves seleting �rst oneof the K lusters by drawing it from a disrete distributionwith parameter vetor ~� = [�1; : : : ; �K ℄. In a seond step,keywords that the ad subsribes to are drawn from the se-leted luster's Bernoulli pro�le.The mixture of Bernoulli pro�les is a well known modelovered extensively in mahine learning text books (for ex-ample, [4℄). Typially the prior probabilities f�jg of belong-ing to a luster and the probabilities of subsribing to theindividual keywords ftjdg are treated as parameters of themodel, and are estimated by maximum likelihood. Maximiz-ing the likelihood is readily ahieved by assuming the data isindependently sampled from (1), and maximizing the result-ing produt of individual probabilities with respet to theparameters. Two ommon approahes are diret gradient-based maximization, or use of the Expetation Maximiza-tion (EM) algorithm. However, the maximum likelihoodapproahes su�ers from a number of problems for the appli-ation we onsider here:� Both EM and diret gradient asent are iterative al-gorithms and require several passes over the data inorder to onverge. Initialization is ruial due to themultiple modes of the likelihood, but very diÆult forthe high dimensional binary data we onsider here.� The optimization results in point estimates of the pa-rameters f�jg and ftjdg. Thus, no notion of uner-tainty about the learned model is available. In a max-imum likelihood framework, a value of 0.5 for a key-word probability an indiate that the keyword waspresent in 1 out of 2 ads, or in 5,000 out of 10,000.
2.1 Related Models



~ ~� i xid t1d...tld...tKd
�1d�1d�ld�ld�Kd�Kd

d = 1; : : : ; Di = 1; : : : ; N

Figure 1: A direted graphial model representationof the Bayesian mixture of Bernoulli pro�les.Latent Dirihlet Alloation (LDA, [5℄) is an unsupervisedmodel that has been developed to model text orpora. LDAshares with the model presented here the fat that they bothare unsupervised. Topis in an LDA model roughly orre-spond to the lusters in the model proposed above. The gen-erative proess, however, is quite di�erent. In LDA, a newtopi (luster) is hosen eah time before a word (here: key-word subsription) is hosen. A single word is subsequentlysampled from a multinomial distribution that depends onthe topi. In the lustering model desribed above, a lusteris hosen, after whih all keyword subsriptions are sampledfrom the luster's Bernoulli pro�le.
3. A BAYESIAN TREATMENTAn alternative approah to maximum likelihood is Bayesianinferene. Rather than treating the unknown variables asmodel parameters and learning their optimal value, in theBayesian framework these unknown variables are treated asbelief variables, and beliefs about their values are repre-sented by probability distributions to expliitly aount forunertainty. Before seeing any data, prior distributions aneither be uninformative or enode prior knowledge aboutthe problem domain. Inferene redues to using Bayes' rulegiven the prior distributions and the likelihood (1) to obtainthe posterior distributions of the variables of interest.For the mixture of Bernoulli pro�les presented here, theBernoulli probabilities of keyword subsription are given on-jugate priors, whih are Beta distributions t � Beta(t;�; �).The parameters � and � an be interpreted as pseudo-ounts:� as the number of times the keyword was subsribed to and� as the number of times the keyword was not subsribedto. The probability density funtion (PDF) of the keywordsubsription probability t isp(t) = Beta(t;�; �) = �(�+ �)�(�)�(�) t��1(1� t)��1:Figure 3(a) shows two examples of the Beta PDF for di�er-ent hoies of the parameters � and �. The higher the sumof the pseudo-ounts, the smaller the unertainty about thevalue of t.The other unknown variables of interest are the prior lus-ter probabilities f�jg; these are given a Dirihlet prior dis-tribution, ~� � Dir(~�j ~) with parameter vetor ~. Similar
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Figure 2: The Bayesian mixture of Bernoulli pro�lesmodel represented as a fator graph, for the i-thtraining example ~xi.to the Beta distribution, j an be interpreted as a pseudo-ount of the number of ads that belong to luster j.Fig. 1 shows the direted graphial model orrespondingto the full Bayesian model, inluding the parameters of theBeta and Dirihlet distributions. The parts of the graph en-losed in plates are repliated aording to the index in theplate. For example, for a �xed value of i in the outer plate,the inner plate is repliated D times, one for eah valueof the keyword index d. The arrows indiate the dependen-ies between variables (see [4, Chapter 8℄ for a treatment ofdireted graphial models). The graph representation hasthe advantage of learly revealing onditional independenebetween variables, whih is important for omputing themarginal posterior distributions eÆiently. Fig. 2 shows thefator graph representation of a slie of the direted graphin Fig. 1 for a single datapoint indexed by i. Fator graphs[9℄ are bipartite graphs that represent joint probability dis-tributions by means of variable nodes (irles) onnetedto fator nodes (shaded squares). Fator nodes express thefuntional relation among the variables onneted to them,and the produt of all fators orresponds to the joint prob-ability distribution [7, 9℄. Marginal distributions are ob-tained by omputing messages from fator nodes to variablenodes: the marginal distribution of any given variable nodeis the produt of its inoming messages. Inferene in fatorgraphs is thus known as message passing, a detailed aountof whih is given in [4, Chapter 8℄. The representation in



Fig. 2 absorbs the observed variables xid; d = 1; : : : ; D intothe fators fid. The marginals of the luster assignmentprobabilities ~� and of the keyword subsription probabili-ties tjd obtained by message passing are thus the posteriordistributions desired.
3.1 Online LearningThe fator graph in Fig. 2 represents only a single ad, butalready ontains on the order of D �K variables, with thenumber of keywords D potentially in the millions,1 and thenumber of lustersK in the hundreds. The full graph furtherrepliates this slie N times (number of training data), withN in the tens of millions. It is learly impossible to storea graph that size in memory, or to ompute and store theneessary messages.To make the inferene pratial, we opt for an online learn-ing sheme based on approximate inferene with AssumedDensity Filtering (ADF) [13℄. Data points (ads) are pro-essed one at a time, and the posterior distributions of ~�and tjd obtained after proessing one data point are passedas prior distributions for proessing the next data point.Beause the fator graph is a tree in this online learningsenario, messages only need to be omputed one from aroot node to the leaves and bak. A pratial shedule forproessing the i-th data point is the following:1. Set the prior distributions g(tld) and g(~�) to the pos-terior marginals on tjd and ~� obtained from proessingthe previous datapoint.2. Compute the messages fmfid!i(i)gDd=1 from the key-word fators fid to the luster assignment variable i.3. Compute the message mh!~�(~�) from the luster as-signment fator h(i; ~�) to the luster assignment prob-ability variable ~�.4. Compute the message mh!i(i).5. For eah keyword fator fid ompute the outgoing mes-sages fmfid!tld(tld)gDd=1.6. Compute the new marginals fp(tldj~xi)gDd=1 and p(~�).Note that no messages need to be stored between the ADFsteps, but only on the order of D�K marginal distributions.The message from fid to i is given bymfid!i(i) = KYj=1 ��jdxid(1� �jd)1�xid�I(i=j) ; (2)where �jd = �jd�jd+�jd is the mean of g(tld), and I(�) is theindiator funtion, equal to 1 if its argument is true, and to0 if it is false. The message from i to fator h is simplymi!h(i) = QDd=1mfid!i(i), and therefore the messagefrom fator h to ~� ismh!~�(~�) = KXl=1 �l DYd=1�ldxid(1� �ld)1�xid :1Most keywords are atually key phrases, akin to typialsearh engine queries, whih is why D an beome so large.

The message from h to i basially sends the (saled) aver-age luster assignment probabilities under the Dirihlet priorg( ~�) mh!i(i) = KYj=1 I(i=j)j :It is useful to ompute as an intermediate step the marginaldistribution of i, given by the normalized produt of itsinoming messages. We adopt the shorthandril = p(i = lj~xi) = l QDd=1 �ldxid(1� �ld)1�xidPKj=1 j QDd=1 �jdxid(1� �jd)1�xid ;(3)and refer to it as the responsibility of luster l for advertise-ment i, with 0 � ril � 1 and PKj=1 rij = 1.The details of the omputation of the message from fid totld are relegated to the appendix. Saled appropriately, themessage itself an be written as the linear ombination of aBernoulli distribution in tld and a uniform distribution:mfid!tld(tld) = ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid + (1� ril) : (4)
3.2 Beta and Dirichlet ApproximationsMessage passing is only eÆient if a ompat message rep-resentation an be assumed. Maintaining suh a represen-tation may require projeting the true message to a familyof distributions thereby approximating it in the spirit of ex-petation propagation [13℄. Given that the message (4) fromfid to the tld nodes is a mixture of a Beta distribution witha uniform distribution, the marginal distribution of tld istherefore not a Beta distribution either,p(tld) / mfid!tld(tld) �mgld!tld(tld)= ril Beta (tld;�ld + xid; �ld + (1� xid)) (5)+ (1� ril) Beta (tjd;�jd; �jd) :Instead, it is the onvex ombination of the prior and theposterior Beta distributions on tld under the assumptionthat the urrent advertisement belongs to luster l. Theposterior has larger weight the larger the responsibility ofluster l.In order to keep the message mtld!fid(tld) in the Betafamily, the marginal p(tld) itself is projeted onto a Betadistribution by moment mathing. For the �rst order mo-ment of the marginal, we obtainM1(xid) = ril �ld + xid�ld + �ld + 1 + (1� ril) �ld�ld + �ld ;and for the seond non-entral moment,M2(xid) = ril (�ld + xid)(�ld + xid + 1)(�ld + �ld + 1)(�ld + �ld + 2)+(1� ril) �ld(�ld + 1)(�ld + �ld)(�ld + �ld + 1) :Note that the �rst order moment, i.e., the mean of themarginal, is a onvex ombination of the prior mean andthe posterior mean under a full update of the Beta distri-bution (without taking the responsibility term ril into a-ount). Using the expressions of the parameters of a Beta
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(a) (b) () (d)Figure 3: (a) Examples of Beta distributions with di�erent parameters � and �: (b) through (d): An exampleof the e�et of moment mathing when updating a Beta distribution with � = 1 and � = 9: Plot (b) showsthe updated � as a funtion of the responsibility r, () shows the updated � as a funtion of r. (d) plots theBeta PDF before and after an update with r � 0:4 (leading to maximum loss of pseudo-ount). Note that thevariane of the updated distribution is larger than before the update.distribution in terms of its moments, the parameters of theapproximating Beta are omputed as~�ld =M1(xid) ~N and ~�ld = [1�M1(xid)℄ ~N ;where ~N = M1(xid)�M2(xid)M2(xid)�M1(xid)2 = ~�ld + ~�ldis the updated pseudo-ount (inluding pseudo-ount om-ing from the prior), roughly the total number of observedads.It is important to mention here that, due to momentmathing, the updates may lead to a loss of pseudo-ount.When learning a single Beta distribution, the total amountof pseudo-ounts (�+ �) an never derease, thus the vari-ane of the Beta distribution an only shrink when observ-ing more and more data. The e�et of \forgetting" pseudo-ounts is illustrated in 3(b)-(d).The exat marginal distribution of ~� turns out to be amixture of Dirihlet distributions,p(~�) = LXl=1 rilDir(~�j~ + ~el) ;where ~el is the i-th unit vetor of length K. There is oneDirihlet mixture per luster, and its value is the result ofassuming that the orresponding luster is fully responsiblefor the ad visited. The mixing oeÆients are the atualresponsibilities that the lusters had for the ad. Here againwe need to take an approximation to stay in the family ofDirihlet distributions. We hose to preserve the means, andensure that the sum of the j is inreased by one. This anbe ahieved by simply adding the luster responsibilities tothe orresponding parameters of the Dirihlet distribution,newj = j + rij .
4. SCALING DETAILSAs desribed in Se. 3.1, using ADF to proess a singledata point at a time leads to large savings in terms of om-putation time and memory use. Even within this onlinelearning framework, lustering large datasets is omputa-tionally demanding. A typial dataset an ontain millions

of advertisements with millions of unique keywords. If ev-ery luster ontained one Beta distribution for every possiblekeyword then the memory requirements would be on the or-der of hundreds of gigabytes. In addition, the omputationof (3) for eah advertisement would involve tens of millionsof terms, whih would make training extremely slow. Sev-eral steps need to be taken to ensure that the model an runin a reasonable amount of time and use a reasonable amountof memory.
4.1 Sparse RepresentationWhile there are potentially millions of unique keywordsin a dataset, individual advertisements are very sparse, typi-ally subsribing to on the order of ten keywords eah. If oneassumes that a luster of similar ads should also be sparse,then that property an be exploited by using a sparse repre-sentation for the lusters. In this representation, only key-words that are \important" to a luster are represented byexpliit Beta distributions, and all other keywords are repre-sented by the same single \default"Beta distribution for thatluster. \Important" here is a ombination of 1) being on-tained in a signi�ant number of the ads in the luster, and2) being suÆiently disriminative for that luster. If everyluster ontains hundreds of unique distributions instead ofmillions then the model will use a small amount memory,and omputation of equation (3) an be done quikly.Several steps are taken to ensure that the model remainssparse. First, in regular intervals, keywords are ulled fromthe model using two di�erent riteria:� Keywords that have a similar probability (mean of theassoiated Beta distribution) aross all lusters are ir-relevant for distinguishing between lusters and an beremoved (replaed in eah luster by the default value).� Within a luster, if replaing a keyword with the de-fault value does not signi�antly hange the responsi-bility pro�le (as measured using Kullbak-Leibler di-vergene) then it an be removed.Seond, also in regular intervals, any lusters that explainonly a tiny fration of the data (i.e. have a small i) are re-moved from the model. The data ontained in any of theselusters is not disarded; instead it is treated like an adver-tisement (albeit one with frational keyword subsriptions



whih are the mean of the keyword Beta distributions forthe luster to be removed) and applied to the model.
4.2 Parallelizing across DataOne strength of this lustering model is that it an beparallelized aross data relatively easily. This parallelizationis an extension of the fator graph model shown in Fig. 2,and is performed in four steps:1. Given a prior model state, whih ould be a previouslytrained model or an empty model, an \equality" fatoris used that reates multiple opies of the prior model.2. Eah of these hild opies is trained in parallel using adi�erent subset of the data.3. After a hild opy is �nished training, we an omputethe delta between the prior model and the hild opyby dividing the hild's posterior distribution by theprior distribution. This delta is a message that tellsthe prior how to update itself to be equal to the hild'sposterior.4. All of these messages from the separate hildren are ap-plied to the prior, giving a posterior distribution thatontains all of the information learned by the parallel-trained opies.This sheme is problemati beause the model is extremelymulti-modal. There is no guarantee that luster i in oneopy will desribe the same natural luster as luster i inanother opy, whih would mean that step 4 would attemptto ombine information from two disparate lusters into asingle luster. We take two steps to ombat this problem.First, before training in parallel, the model is trained seri-ally on a subset of the data form priming. This gives thelusters some initial de�nition before the parallel step, andredues the freedom of the parallel opies to settle on dif-ferent modes. Seond, the full dataset is split into multiplebathes. Parallel training is done one bath at a time, andafter eah bath the posterior produed in step 4 is used asthe prior in step 1. This ensures that multiple opies of asingle luster annot drift too far apart during the paralleltraining phase.
5. EVALUATIONThe algorithm is evaluated using two datasets. The �rst issyntheti with known luster assignments: 10,000 advertise-ments are sampled from a randomly generated model with 10lusters whose prior probabilities are a random sample fromuniform multipoint distribution, and 100 keywords whoseBernoulli probabilities are independently sampled from auniform distribution.The seond dataset is derived from a orpus of almost6 million advertisements and 19 million distint keywords.The average advertisement subsribes to approximately 28keywords. One an think of the dataset as a bipartite graphonneting ads to keywords, and groups of well-onnetednodes in the graph would orrespond to lusters of similarkeywords and advertisements. The hallenge is then to �ndthese groups of well-onneted nodes in the graph.To get a feeling for the omplexity of the problem, it is use-ful to analyze the onneted omponents of the advertisement-keyword graph. For our dataset, this graph has one large

omponent whih ontains 88% of the advertisements, withthe remaining advertisements split into 388,000 tiny disjointsub-graphs. 273,000 of these disjoint sub-graphs ontain asingle advertisement with only one keyword. In addition,some individual advertisements subsribe to huge numbersof keywords, sometimes as many as one million keywordsfor a single advertisement. These advertisements an helpreate strong onnetions between lusters that are unde-sirable. The large number of disjoint subsets and the over-subsribed advertisements ombine to add enough noise tothe input data that it would be diÆult to �nd a good lus-tering solution.We hose to apply some �lters for on that dataset fortwo reasons: By its struture, we do not expet to obtainmeaningful lustering solutions with any lustering method.Seondly, the dataset is of a size that we ould easily handleusing the online lustering method presented in this paper,but not with any other lustering method without substan-tial amounts of engineering. In order to obtain a more rea-sonable dataset, we �rst remove all keywords whose totalnumber of subsribed ads is below a ertain threshold ta.Seond, we remove all advertisements whose keyword sub-sription ount is above a ertain threshold tk. This ullingretains the most used keywords and an also signi�antlyredue the size of the input dataset, whih has the addedbene�t of speeding up the training proess.Using thresholds of ta = 100 and tk = 500 leaves about207,000 advertisements and 2,000 unique keywords. Thekeyword-advertisement graph for this dataset ontains onlya single onneted omponent, and is of a size that an behandled using k-means or EM lustering.We ompare the proposed Bayesian lustering model withseveral other lustering methods: k-means, agglomerativelustering, and a maximum likelihood (ML) version of the in-ferene for the mixture of Bernoulli pro�les based on expetation-maximization (EM). Details about these algorithms an befound in the exellent review paper [3℄. Comparing unsu-pervised lustering models is intrinsially diÆult, beausethere is no ground truth from whih we an measure thepreditive ability of the model. The most straightforwardomparison is to visually inspet the lusters, whih is pos-sible here beause the items being lustered { Internet searhkeywords { have meanings that we an understand.
5.1 Qualitative Comparison and Training TimeUsing the advertisement derived dataset, we visually in-spet the resulting lusters for onsisteny in the meaningsof the most prominent keywords. The results are shown inTable 1. Qualitatively, k-means and agglomerative luster-ing su�er from a ollapse of most of the ads into a singleluster. This an be aused by the spurious onnetions be-tween lusters introdued by ads that subsribe to inoher-ent sets of keywords. Both the Bayesian and ML mixture ofBernoulli pro�le models attain qualitatively better results,managing to identify many more meaningful lusters andspreading the ads more evenly aross these.We ompare the training times of the four models on thisdataset. k-means and agglomerative lustering both takeapproximately three hours to train. Beause it requires vis-iting the whole dataset many times, ML inferene with theEM algorithm is omputationally very intense and takes 40hours to train. The Bayesian mixture model using ADF thatwe propose in this paper trains in only 1 hour.



Table 1: Training time and subjetive quality assessment of lustering methods on a dataset of 207,000 ads,when requiring all methods to reate 100 lusters.Method Training time Clusteringk-means 3h 90% of ads in one luster. Remaining lusters are onsistent.Agglomerative 3.5h 90% of ads in one luster. Remaining lusters are onsistent.ML inferenewith EM 40h Ads evenly spread. Most lusters are onsistent, some are mixtures of topis.Bayesianinferene 1h Ads are evenly spread. Almost all lusters are onsistent, few are mixtures of topis.A larger dataset was generated from the orpus of adver-tisements using ta = 100 and tk = 100, whih yields 1.3million advertisements and 73,000 unique keywords. A par-allel implementation (Set. 4.2) of the Bayesian mixturemodel we propose in this paper takes seven hours to trainon this larger dataset. However, none of the other benh-mark methods had �nished training after 3 days, hene wean not provide any performane omparisons on that largedata set.
5.2 Quantitative EvaluationFor the syntheti dataset, we test the abibility of eah ofthe lustering algorithms to identify whether two advertise-ments belong to the same luster or not. We �nd that thisevaluation riterion is most easy to interpret, an be om-puted for all lustering methods, and is losest to an atualappliation where our goal is indeed to use the lusteringmodel to assign ads to ategories.Every pair of advertise-ments is lassi�ed by the ompeting algorithms as belongingto the same luster or to di�erent lusters. For the proba-bilisti models, we ompute for eah pair of advertisementsxi and xj the probability that they belong to the same lus-ter: p(i = j jxi; xj) = KXl=1 p(i = ljxi)p(j = ljxj) ;given by the dot produt of the resposibility vetors (3).Naturally one would lassify the pair of advertisements asbelonging to the same luster if p(i = j jxi; xj) > 0:5, butin the experiments we explore a variety of di�erent thresh-olds in the [0.1, 0.9℄ range. We ompute a true positiveratio (fration of the pairs orretly lassi�ed as belongingto the same luster) and a false positive ratio (fration ofthe pairs inorretly lassi�ed as belonging to the same lus-ter), and plot them against eah other. For the probabilis-ti methods varying the threshold allows us to obtain anROC urve [12℄. For the non-probabilisti k-means and ag-glomerative lustering we obtain only a single point. Theresults are displayed in Figure 4. Agglomerative lusteringand k-means have a true positive rate of 93.0% and 94.3%respetively, and both have a false positive ration of 2.28%.With a threshold of 50%, the ML mixture model has a truepostive ratio of 97.4% and a false positive ratio of 1.67%,while the Bayesian mixture model has a true positive ratioof 99.5% and a false positive ratio of 1.66%. As an be seenin the �gure, the Bayesian mixture model an onsistentlymath the true positive ratio of the ML model with fewerfalse positives.

Figure 4: Evaluation on syntheti dataset. True pos-itive ratio (fration of the pairs orretly lassi�edas belonging to the same luster) versus false posi-tive ratio (fration of the pairs inorretly lassi�edas belonging to the same luster)

Table 2: Quantitative omparison based on thetest negative log likelihood, and on the lusterand advertiser entropy sores when learning a 100luster model with all methods. Smaller numbersare better for all metris.neg avg loglikelihood advertiserentropy soreBayesian inferene 17.97 1.18Bayesian inferene(disarding lutter) 0.96ML inferene with EM 12.98 2.61The advertisement-based dataset does not o�er a groundtruth. For this reason, the evaluation is performed aord-ing to the following two metris: the average negative loglikelihood of the test set (losely related to the log perplex-ity, a quality riterion that has been used to evaluate, forexample, the LDA model in [5℄), and the advertiser entropysore. The seond metri is based on the assumption thatadvertisements from a single advertiser most likely relate tothe same onept, and thus should belong to as few lustersas possible. The advertiser entropy sore measures the en-



tropy of the distribution of advertisers aross lusters. It isde�ned as: SA = 1N Xa NaH(~pa) ;where a is an advertiser index, Na is the number of ad-vertisements that belong to advertiser a, vetor ~pa ontainsthe empirial probabilities of an advertisement from adver-tiser a of belonging to the di�erent K lusters, and H(�) isthe entropy funtion. By de�nition, a good lustering solu-tion should ahieve a low advertiser entropy sore. Both ofthese metris require probabilisti luster assignments andare therefore not suitable for evaluating k-means and ag-glomerative lustering.As shown in Table 2, a better average test log likelihoodis ahieved by the EM algorithm, whih is probably at-tributable to the fat that it performs several passes throughthe training data, and does not enfore sparsity in its lus-ter representations. The advertiser entropy sore is best forthe Bayesian inferene approah than for EM. This meansthat on average advertisers are spread aross fewer lusters.A further improvement an be obtained from the Bayesianapproah by letting the model learn a \lutter luster". Thisluster traks an idential Beta distribution for all keywordsubsription probabilities. As a result, this luster tends toattrat advertisements that subsribe to unrelated keywordsand those that do not �t in any of the other lusters. Thisultimately has the e�et that these remaining lusters aremore oherent, whih explains the superior advertiser en-tropy sore that an be obtained when disarding the lutterluster.
5.3 Choosing the Number of ClustersIn the previous setions, our main goal was to benhmarkmethods, and we thus required all methods to learn the samenumber of lusters. In a pratial appliation that uses thelearned luster model for, e.g., ategorization, hoosing theright number of lusters would be a neessary next step.This topi is extensively overed in the lustering literature,see [3℄ for pointers. However, we mainly use the lusteringmodel for keyword suggestion, where it turned out that thenumber of lusters is rather unritial, see the disussionbelow in se. 6.
5.4 Benefits of Modeling UncertaintyThe topi of a luster is determined by examining the key-words that have the largest probability of being subsribedto. Beause of the noisy nature of the data, it is possiblefor ertain unrelated keywords to spuriously have a high av-erage subsription probability. These keywords might havebeen subsribed to by noisy ads that also simultaneouslysubsribe to some of the main themati keywords of theluster. The Bayesian treatment proposed allows one to dealwith this problem by providing a measure of the unertaintyabout the subsription probabilities. Table 3 shows an ex-ample of a very homogeneous luster where the keyword withhighest mean subsription probability � { \pest ontrol" {does not �t. However, this keyword was seen ative in fewerads attributed to this luster. The total pseudo-ount �of the Beta distribution represents the e�etive number ofads that were attributed to this luster and subsribed tothe keyword in question. Given two keywords with identi-al mean � but with di�erent � values, the model is more

Table 3: Most prominent keywords in two di�erentlusters for the Bayesian approah. Sorting byexpeted keyword subsription probability � anplae spurious keywords on top of the list. Sortingby the e�etive number of ads that subsribe tothat keyword (parameter � of the Beta distribution)fators in the unertainty and allows to get rid ofthe noisy keyword.Sorting by mean:Keyword Mean (�) Alpha (�) Beta (�)pest ontrol 0.113 44 343nissan altima 0.074 84 1039nissan maxima 0.065 75 1080nissan quest 0.065 76 1090nissan dealer 0.051 61 1136Sorting by positive ad pseudo-ount (�):Keyword Mean (�) Alpha (�) Beta (�)nissan altima 0.074 84 1039nissan quest 0.065 76 1090nissan maxima 0.065 75 1080nissan dealer 0.051 61 1136pest ontrol 0.113 44 343Table 4: Illustration of additional suggested key-words for an advertisement.Subsribed Keywords Suggested Keywordswindow leaner arpet leaning servieswindow leaning home leaning serviesleaning ompany oor leaning serviesleaning ompanies residential leaning serviesommerial leaningommerial leaning serviesapartment leaning serviesoÆe leaning serviesoÆe leaningleaning tipsertain about the keyword with highest �: Sorting by � in-stead of by � thus takes into aount the unertainty, andin Table 3 the bene�ts are evident: the spurious keyword isrelegated to a lower position.
6. KEYWORD SUGGESTIONIn our spei� appliation, we are interested in keywordsuggestion. The goal is to suggest to an advertiser a rangeof keywords that are semantially similar to ones that werealready seleted, in order to inrease the reah of the ad.This is a hallenging and ommerially important task aspointed out by [8℄, and methods using semanti similarity [1℄and onept hierarhies [6℄ as well as logisti regression andollaborative �ltering [2℄ have been proposed. Our approahis similar to the latter in that makes keyword suggestionsto one advertiser based on keyword subsriptions of otheradvertisersThe model desribed in Set. 2 an be used in a generativeform, following the direted graphial model shown in Fig. 1.For keyword suggestion, we assume that a spei� ad repre-



sents partially observed data: An advertiser may have putsome thoughts into whih keywords to subsribe to, but stillmay have missed out on some important ones. Subsribedkeywords thus at as an indiator of the advertiser's intent,but the (huge) set of non-subsribed keywords is treated as\not observed".With this partially observed data, we an again performmessage passing, in order to ompute the probability of theunobserved keywords, given the subsribed keywords. Inshort, this works as follows: Let S � f1; : : : ; Dg be theset of all subsribed keywords in the i-th ad. All fatorsffidg; d 2 S; send messages of the form (2) to node i, whereit is ombined with the inoming message from fator h.Similar to the update senario in (3), a responsibility oflusters for the ad is omputed, but this information is onlybased on the keywords that are atually subsribed:~ril = p(i = lj~xi) = l Qd2S �ldxid(1� �ld)1�xidPKj=1 j Qd2S �jdxid(1� �jd)1�xid :(6)As the last step, we an ompute the expetation of thedata (keyword) nodes that are impliitly attahed to thefators fid in Fig. 2, and obtain for the unobserved keywordsd 62 S p(xid = 1jfxibgb2S) = KXj=1 ~rij�jd ;a linear ombination of the Bernoulli pro�les for the unob-served keywords, with weights based on the responsibilitiesomputed from the observed keywords.Using this method, keywords an be suggested to userswith a lear ranking riterion (the above probability). Ta-ble 3 shows the additional keywords that are suggested for aspei� advertisement related to leaning servies. The top10 keywords with highest onditional subsription probabil-ity (given the existing subsribed keywords) are shown inthe table.Furthermore, the keyword suggestion an be re�ned byan iterative interative proess: from the list of suggestions,users an selet keywords (or mark keywords as \I don'twant to subsribe to that"). This updated information anbe used to re�ne the omputation of responsibilities in 6,and present the user a re�ned list of keywords.
7. DISCUSSIONWe have proposed a Bayesian online lustering model forlarge datasets of binary vetors based on a mixture of Bernoullipro�les. The experiments onduted show that ompared tothe maximum likelihood treatment, the Bayesian approahproposed is both more aurate and dramatially faster totrain. Whereas the maximum likelihood model is trained byEM in bath mode and requires several passes over the data,our approah uses an online training sheme requiring a sin-gle pass, and is suitable for streams of data. In ontrast tothe EM algorithm, training is inremental: adding one moredata point does not require retraining the entire model.Our approah is not only faster to train than k-means andagglomerative lustering; it also o�ers probabilisti lusterassignments and expliitly models the unertainty about thelearned model parameters, one advantage of whih is resis-tane to noise. A straightforward appliation of our gen-erative probabilisti model is the suggestion of additional

keywords for advertisements.Future work on this topi will benhmark the keywordsuggestion algorithm desribed above to reommender sys-tems. In partiular, we plan to evaluate the performane ofthe Bayesian reommender system MathBox [14℄ for key-word suggestion.
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APPENDIX

A. ALGEBRAIC DETAILSThe most involved messages to derive are those from fa-tor fid to the lass membership variable i and to the leafBernoulli probability variables tld. Computing mfid!i(i)requires marginalizing over the Bernoulli probability vari-ables, and the realization that the integral fatorizes:mfid!i(i)=ZftjdgKj=1fid(i; xid; ftjdg) KYj=1mtjd!fid(tjd)dtjd= KYj=1 ZftjdgKj=1�tjdxid(1� tjd)1�xid�I(i=j)mtjd!fid(tjd)dtjd= KYj=1 ��jdxid(1� �jd)1�xid�I(i=j) :The omputation of message mfid!tld(tld) requires theomputation of message mi!fid(i). This last message iseasy to obtain by dividing the marginal p(ij~xi) by the in-oming message mfid!i(i):mi!fid(i) = p(ij~xi)mfid!i(i)= KYj=1 � rij�jdxid(1� �jd)1�xid �I(j=i) :Message mfid!tld(tld) an now be omputed as:mfid!tld(tld) = KXi=1Zftjdgj 6=lfid(i; xid; ftjdg)mi!fid(i)� KYj 6=lmtjd!fid(tjd)dtjd= KXi=1 �ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid �I(l=i)� Zftjdgj 6=l KYj 6=l �rij tjdxid(1� tjd)1�xid�jdxid(1� �jd)1�xid �I(j=i)� KYj 6=lBeta(tjd;�jd; �jd)dtjd= ril tldxid(1� tld)1�xid�ldxid(1� �ld)1�xid + KXj 6=l rij :


