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Abstract

The Gaussian process latent variable model
(GP-LVM) is a generative approach to non-
linear low dimensional embedding, that pro-
vides a smooth probabilistic mapping from
latent to data space. It is also a non-linear
generalization of probabilistic PCA (PPCA)
(Tipping & Bishop, 1999). While most ap-
proaches to non-linear dimensionality meth-
ods focus on preserving local distances in
data space, the GP-LVM focusses on exactly
the opposite. Being a smooth mapping from
latent to data space, it focusses on keep-
ing things apart in latent space that are far
apart in data space. In this paper we first
provide an overview of dimensionality reduc-
tion techniques, placing the emphasis on the
kind of distance relation preserved. We then
show how the GP-LVM can be generalized,
through back constraints, to additionally pre-
serve local distances. We give illustrative ex-
periments on common data sets.

1. Introduction

Principal component analysis (PCA) is perhaps the
most widely used technique for obtaining a lower di-
mensional representation of a data set. The PCA al-
gorithm can be motivated in several different ways:
seeking orthogonal linear projections of the data with
maximum variance, seeking a linear embedding of the
data which is optimal under linear reconstruction for a
quadratic loss (Jolliffe, 1986); as classical multidimen-
sional scaling (CMDS) where both the latent space and
the data space distances are Euclidean (Mardia et al.,
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1979). More recently, PCA has also been motivated as
the maximum likelihood solution to a linear Gaussian
latent variable model (Tipping & Bishop, 1999).

The Gaussian process latent variable model (GP-
LVM), proposed by Lawrence (2005), is a fully prob-
abilistic, non-linear, latent variable model that gener-
alises principal component analysis. The model was
inspired by the observation that a particular proba-
bilistic interpretation of PCA is a product of Gaussian
process models each with a linear covariance function.
Through consideration of non-linear covariance func-
tions a non-linear latent variable model can be con-
structed.

An important characteristic of the GP-LVM is the
ease and accuracy with which probabilistic reconstruc-
tions of the data can be made, given a (possibly new)
point in the latent space. This characteristic is ex-
ploited in several of the successful applications of the
GP-LVM: learning style from motion capture data
(Grochow et al., 2004) and learning a prior model
for tracking (Urtasun et al., 2005). Implicitly the
GP-LVM learns a mapping between the latent space
and the data space. This mapping will typically be
smooth.1 This is a characteristic shared with other
probabilistic, non-linear latent variable models. Den-
sity networks (MacKay, 1995) and the Generative To-
pographic Mapping (GTM) (Bishop et al., 1998).
Both make use of smooth mappings from the latent
space to the data space.

1.1. Local Distance Preservation

A popular perspective for dimensionality reduction ap-
proaches is to consider how the low dimensional repre-
sentation preserves the distances between points in the

1Here, by smooth, we mean that points in latent space
which are ‘close’ will be mapped to points in data space
which are also ‘close’. Many different covariance functions
can be employed with the Gaussian process to ensure this.
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Figure 1. Dimensional reduction of a one dimensional ob-
ject in two dimensions. The intuition is that we would
rather preserve smaller distances than larger distances.

original data. It is often argued that, for dimensional-
ity reduction, we should be more interested in preserv-
ing the distances between close together objects than
distant objects. Figure 1 illustrates the intuition be-
hind this argument. The figure shows a smooth curve
in two dimensions, which we consider to be the high
dimensional data. If we wish to recover the low dimen-
sional structure (in this case the one dimensional line)
it makes sense to preserve distances of points that are
close together (such as a and b). These close together
points better reflect the true distance along the under-
lying object. Points which are further apart (such as
a and c) are less representative of the distance along
the underlying object.

There are dangers involved however, in focussing too
much attention on preserving local distances. First, if
not enough effort is put into preserving large distances,
the resulting embedding might ‘overlap’: objects that
were distant in data space end up close in latent space.
Second, focussing too much on small distances will lead
to large sensitivity to any noise in the high dimensional
data. Too much noise might even lead to complete
failure in capturing the underlying manifold structure.

1.2. Dissimilarity Preservation

The GP-LVM ensures a smooth mapping from latent
to data space. However, this mapping does not guar-
antee that local distances in data space will be pre-
served in the latent space. On the contrary, it guaran-
tees that two points which are ‘distant’ in data space
cannot be placed too close together in latent space:
this would imply a discontinuity in the mapping. So
in some sense the GP-LVM is dissimilarity preserving.
Note, that the precise distance between far away points
is not necessarily preserved in latent space: two such
points will simply not be close together: ‘far away’
is just ‘far away’. As we discuss in Section 4, this
dissimilarity preservation property is shared by den-
sity networks and the GTM. The GP-LVM does not
constrain nearby points in data space to be close in

latent space. It is possible that such a model will have
higher likelihood, but even this will not necessarily be
the case as we will see in the motion capture example
in Section 6.1.

Unfortunately, when performing dimensionality reduc-
tion, it is often not possible to accurately preserve both
local distances and dissimilarities. The question na–
turally arises, of which of the two different approaches
is more correct: putting more emphasis on preserv-
ing local distances, or on preserving dissimilarities? In
practice, the best approach will very much depend on
the data set. However, if we believe that local distance
preservation is important, but we still want a proba-
bilistic model there is currently no obvious approach.
In this paper we introduce the back constrained GP-
LVM, where the likelihood is optimised with the con-
straint of local distance preservation. This constraint
is imposed through the form of a mapping from the
data space to the latent space. In effect, we therefore
have two models in action simultaneously: a dissimi-
larity preserving, probabilistic GP-LVM mapping from
latent to data space, and a local distance preserving
mapping from data to latent space.

2. Dimensionality Reduction

Multidimensional scaling (MDS) is the generic statis-
tical denomination for data reduction methods that
operate through matching distances, or similarities, in
the observed and latent spaces. Typically these ap-
proaches define stress functions which evaluate the
quality of the match between the distances in latent
space and the distances in data space (implying rota-
tion and translation invariance). Perhaps the simplest
such stress function is the squared difference between
distances in latent and distances in data space,

S =
N∑

n=1

N∑
m=n+1

(δmn − dmn)2 , (1)

where we have N data points and the distances be-
tween points in latent space are given by δmn, while
the distances between points in data space are given
by dmn.

If the distances in latent space are Euclidean, δ2
mn =

(xm − xn)T (xm − xn), where the points in the latent
space are given by X = [x1 . . .xN ]T, then it is com-
mon to seek the zero error point with respect to X
for this cost function through an eigenvalue problem2

(Mardia et al., 1979). Furthermore if the data is vecto-
rial and its distance function is also Euclidean, d2

mn =

2If after retaining q eigenvectors the residual variance
is zero, the resulting X is also a zero error solution to (1).
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(ym − yn)T (ym − yn), where the centred points from
the data space are given by Y = [y1 . . .yN ]T, then the
eigenvalue problem is of the form

KY Λ = ΛU,

where KY = YYT is the inner product matrix (which
is a form of similarity matrix) and the latent positions
are then given by X = UΛ

1
2 . The form of this eigen-

value problem can be easily shown to be equivalent to
that solved in PCA (see, for example, Lawrence, 2005).
More generally, replacing KY with any positive defi-
nite similarity matrix, implies a feature space within
which the Euclidean distances are being measured,

dmn = (φ (ym)− φ (yn))T (φ (ym)− φ (yn)) .

If this matrix is constructed through a Mercer ker-
nel then the approach is recognised as kernel PCA
(KPCA) (Schölkopf et al., 1998), which implies a (typ-
ically smooth) mapping from the data to the feature
space,

f (yn) =
M∑

m=1

αm φ (ym)T φ (yn) .

Note that KPCA preserves local similarities, since the
smooth mapping is from data to latent space.

Many CMDS practitioners also use similarity matrices
which are non-positive definite. These are equivalent
to non-Euclidean distances and, indeed are often con-
structed from distances which are non-Euclidean. A
classic example is the distance matrix generated by
the Isomap algorithm (Tenenbaum et al., 2000).

3. Local Distance Preservation

The objective function (1) seeks a configuration for
which all distances are considered, regardless of their
relative magnitude. However, it can be modified to
force an algorithm to focus more on local distances. In
the Sammon mapping3 (Sammon, 1969) an alternative
stress is used, one which can be written as a weighted
sum of squares,

S =
N∑

n=1

N∑
m=n+1

wmn (δmn − dmn)2 , (2)

where the weights are proportional to the inverse dis-
tance in data space,

wmn ∝ d−1
mn.

3‘Sammon mapping’ is perhaps a misnomer as, in its
standard form, there is no explicit mapping associated with
the algorithm.

The weights reduce the contribution of entries in the
error matrix with large dmn forcing the algorithm to
focus on matching more local distances. Unfortunately
such a modification of the stress function comes with
a cost: the zero error point solution can no longer
be found through an eigenvalue problem. Instead, an
iterative optimisation of this non-convex cost function
must be attempted.

3.1. SDE, LLE, SNE and Isomap

Most of the recent work in machine learning has been
on preserving local distances in the latent space. For
example the locally linear embedding (LLE) (Roweis
& Saul, 2000) seeks an embedded space for which lo-
cally linear relationships are preserved. The Isomap
algorithm (Tenenbaum et al., 2000) computes an ap-
proximation to geodesic distance through constructing
neighbourhood graph and the semidefinite embedding
(Weinberger et al., 2004) maximises the variance in
the latent space with a constraint that local distances
should be preserved. These methods share a common
thread with the Sammon mapping in that they are in-
terested in preserving local distances. However, they
achieve their aim while maintaining the unimodality
of solutions associated with CMDS. In the case of
SDE and Isomap this is achieved through explicitly us-
ing the CMDS solution for obtaining the visualisation.
The innovation is in how the distance matrix is devel-
oped. The distance matrix is designed to reflect local
distances: in the case of Isomap through construction
of a graph based on local distances and for the SDE
by adapting the distance matrix such that non-local
distances are explicitly maximised while forcing the
preservation of local distances. Stochastic neighbour
embedding (SNE) was proposed by Hinton and Roweis
(2003) as “an improvement over methods like LLE or
SOM in which widely separated data-points can be
‘collapsed’ as near neighbors in the low-dimensional
space”. SNE does not provide a probabilistic mapping,
but rather an information theoretic objective function
which is easily interpretable and expandable (Zien &
Quiñonero Candela, 2005).

4. Probabilistic Dimensionality
Reduction

A difficulty with relying on local distances when con-
structing a low dimensional embedding is sensitivity
to noise. If the data of interest lies precisely on a low
dimensional manifold the local distances will typically
be reliable, however if the low dimensional manifold
is corrupted by high dimensional noise, such local dis-
tances can become unreliable. In this context it may
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be more sensible attach less importance to local dis-
tances. An alternative class of algorithms model the
data probabilistically as a lower dimensional manifold.
One feature of these algorithms is that they are, per-
haps surprisingly, more constrained by the non-local
distances than by the local ones.

4.1. Probabilistic Approaches

The probabilistic approach to dimensionality reduc-
tion is to formulate a latent variable model, where the
latent dimension, q, is lower than the data dimension,
d. The latent space is then governed by a prior dis-
tribution p (X). The latent variable is related to the
observation space through a probabilistic mapping,

yni = fi (xn) + εn,

where yni is the ith feature of the nth data point and
εn is a noise term that is typically taken to be Gaus-
sian,4 p (εn) = N

(
εn|0, β−1

)
. If the prior is taken to

be independent across data points the marginal likeli-
hood of the data can be written as

p (Y) =
∫ N∏

n=1

p (yn|xn) p (xn) dX,

where p (yn|xn) =
∏d

i=1 N
(
yin|fin (xn) , β−1

)
. If the

mapping is chosen to be linear, fi (xn) = wT
i xn,

and the prior over the latent variables is taken to be
Gaussian, then the maximum likelihood solution of
the model spans the principal subspace of the data
(Tipping & Bishop, 1999). However if the mapping
is non-linear it is unclear, in general, how to propa-
gate the prior distributions uncertainty through the
non-linearity. One suggested approach is to make use
of point based representations of the latent space ei-
ther through sampling, such as in density networks
(MacKay, 1995), or through an explicitly point based
representation of the latent space, such as the genera-
tive topographic mapping (Bishop et al., 1998). Both
approaches are strongly related to each other.

4.1.1. The GP-LVM

An alternative suggestion given in (Lawrence, 2004;
Lawrence, 2005) is to place the prior distribution over
the mappings rather than the latent variables. The
mappings may then be marginalised and the marginal
likelihood optimised with respect to the latent vari-
ables,

p (Y|X) =
d∏

i=1

N∏
n=1

p (yin|fin) p (f |X) . (3)

4We denote a Gaussian distribution over z with mean
µ and covariance Σ by N (z|µ, Σ).

One motivation for the approach was provided by the
fact that if the prior is taken to be a Gaussian pro-
cess which is independent across data dimensions and
has a linear covariance function (thus restricting the
mappings to linearity) the maximum likelihood solu-
tion with respect to the embeddings is given by prin-
cipal component analysis. Thus the algorithm pro-
vides an alternative probabilistic model for PCA to
that given by (Tipping & Bishop, 1999). However, if
the covariance function is one which allows non-linear
functions (e.g. the RBF kernel) then the model pro-
vides a probabilistic non-linear latent variable model.
This approach is known as the Gaussian process latent
variable model.

4.1.2. Probabilistic Models and Locality

Each of the probabilistic models mentioned above im-
poses some constraints on the mapping function from
the latent space to the data space. In the case of den-
sity networks the mapping is given by a multi-layer
perceptron and for the GTM an RBF network is used.
For the GP-LVM a prior over functions constrains the
type of map. For the purposes of this discussion we
will assume that these mappings are smooth. In gen-
eral terms, by smooth, we mean that if two points, xn

and xm, are separated by a ‘small distance’ (relative
to distances between the other points in the space) in
latent space then the positions they map to, yn and
ym, will also be separated by a ‘small distance’. This
smoothness is an inherent constraint in all these mod-
els. It implies that no two points which are ‘far apart’
in data space can be embedded as ‘close together’ in la-
tent space. However, it is not in line with the locality
preserving constraints we discussed earlier. There is
nothing in the constraint to prevent two points which
are close in data space being far apart in latent space.
(There is at most a mild encouragement from the like-
lihood function.) While this is not in line with the
intuition illustrated by Figure 1, it is likely to be a
more robust approach when the manifold is corrupted
by high dimensional noise. As mentioned in Sect. 1.1,
neither constraint can necessarily be considered more
correct: the better approach is dependent on the data
to hand. However, the very fact that the latter models
are probabilistic can be viewed as an advantage in it-
self. Indeed the successful applications and extensions
of the GP-LVM (Grochow et al., 2004; Urtasun et al.,
2005; Shon et al., 2006; Wang et al., 2006) each take
explicit advantage of the fact that the model is prob-
abilistic. In the next section we will show how the
GP-LVM can be modified to preserve locality leading
to a fully probabilistic, locality-preserving, non-linear
dimensional reduction technique.
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5. Back Constraints

The smooth mapping in the Gaussian process latent
variable model ensures that distant points in data
space remain distant in latent space. However there
are several algorithms that lead to a smooth mapping
in the opposite direction, from data space to latent
space, e.g. kernel PCA (Schölkopf et al., 1998) and
the neuroscale algorithm (Lowe & Tipping, 1996). In
kernel PCA the mapping is implicit and arises through
the use of the kernel function. A key advantage of ker-
nel PCA over other eigenvalue based techniques is that
this mapping arises as a side effect. It is interesting to
note that kernel PCA can also be obtained by inverting
the rôles of inputs and outputs in the GP-LVM: maxi-
mizing the marginal likelihood (3) with respect to the
latent variables (outputs of the GP-LVM) yields kernel
PCA. In neuroscale an alternative approach is taken:
the mapping is explicitly included by constraining the
latent points to be a function of the input points,5

xnj = gj (yn;w) . (4)

A stress function such as (1) or (2) can then be min-
imised with respect to the parameters of the mapping
rather than the latent points themselves. Constraining
the latent points to be a smooth mapping from data
space forces small distances in data space to be small
in latent space, in line with the locality constraints
imposed by the algorithms mentioned above.

5.1. Constrained Maximum Likelihood

Applying the approach taken in the neuroscale algo-
rithm to the GP-LVM is straightforward. Rather than
maximising the likelihood (3) with respect to X di-
rectly, we replace each element of X with a map-
ping of the form given in (4). Two points in latent
space will then be constrained to always be close if
their data space counterparts are close. Instead of di-
rect likelihood maximisation, we now maximize a con-
strained likelihood, the constraints preserving nearby
‘localities’. How close is ‘nearby’ is determined by the
smoothness of the mapping. For example if the map-
ping is kernel based using an RBF kernel,

gj (yn) =
N∑

m=1

αjmk (yn,ym) ,

where A = {{αjn}N
n=1}

q
j=1 are the parameters, and

the kernel matrix is,

k (yn,ym) = exp
(
−γ

2
(yn − ym)T (yn − ym)

)
, (5)

5For the neuroscale algorithm a radial basis function
network or multi-layer perceptron are suggested but other
mappings such as a kernel based could equally be applied.

closeness is determined by the setting of the inverse
width parameter γ. On the other hand, if the mapping
is given by a multi-layer perceptron,

gj (y) = vij

h∑
i=1

σ
(
uT

i y
)
,

where

σ (z) =
1

1 + exp (−z)

is the sigmoid function and the parameters are given
by {{vij}h

i=1}
q
j=1 then the closeness is controlled by the

number of hidden units used, h. One elegant feature
of the approach is that any mapping can be used: the
only requirement is that the derivatives of the outputs
with respect to the parameters can be computed so
that the likelihood can be maximised by gradient based
methods. We refer to this constrained version of the
GP-LVM as the GP-LVM with back constraints.

6. Experiments

We analyze the GP-LVM with back constraints, and
compare it to unconstrained GP-LVM, and to Isomap.

6.1. Motion Capture Data

A neat illustration of the issues that arise when the
GP-LVM is used without back constraints is given by
a simple motion capture data set. The data consists of
a subject breaking into a run from standing.6 The di-
mension of the data is 102, from the three coordinates
of each of the 34 markers. There are approximately
three full strides in the sequence. The mean of the
data is removed from each frame, so in effect the sub-
ject is running ‘in place’. The data is therefore some-
what periodic in nature, however, the subject changes
the angle of the run throughout the sequence. Our ex-
perimental set up was as follows. We trained both an
unconstrained and a back constrained GP-LVM with
an RBF covariance function. The back constraint was
implemented through an RBF based kernel mapping
(5), with γ = 1 × 10−3. Both models were initialised
using PCA. For the RBF model this is straightforward,
but for the kernel model this was achieved by setting
the kernel mapping’s parameters, A, to minimise the
squared distance between the latent positions given
by the mapping and those given by PCA. The latent
positions/mapping parameters and the GP covariance
function parameters were then jointly optimised using

6Data made available by the Ohio State University
Advanced Computing Center for the Arts and Design,
available from http://accad.osu.edu/research/mocap/
mocap_data.htm, sequence ‘Figure Run 1’ in .txt format.
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Figure 2. Visualisation of the motion capture data. (a) The regular GP-LVM, log likelihood 1,543 and (b) the GP-LVM
with back constraints, log likelihood 1,000. The paths of the sequences through latent space are shown as solid lines. The
back constraint used was an RBF kernel mapping with γ = 1 × 10−3. In both cases the start of the sequence is towards
the top left and the end is towards the bottom centre-left. The grey scale background indicates the precision with which
the mapping is expressed.

conjugate gradients. Scripts for running these experi-
ments are available on line, see Appendix.
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Figure 3. Projection into data space from four points in
the latent space. Note how the position in the cycle is the
same but the inclination of the runner differs becoming
more upright as the sequence proceeds.

The visualisation results are shown in Figure 2. The

data is temporal in nature (although the models do not
take advantage of this fact) and we have connected
points in the plots that are neighbours in time. In
Figure 2(a) the sequence does not clearly show the
periodic nature of the data. The likelihood of this
model is higher, as we should expect given that the
other model is constrained, however the sequence is
split across several sub-sequences. (This is not due to
overfitting, since the model provides a smooth repre-
sentation of the data which generalises well across the
latent space.) To reflect the periodic nature of the se-
quence it is necessary to use a circular structure. Such
a structure will be of the form of a squashed spiral
which will either have less representational power in
the inner rings (analogous to inner groove distortion in
gramophone records) or will cross over itself in a man-
ner which is not consistent with the data. The higher
likelihood solution turns out to be placing points far
apart which are actually close together. The prob-
lem arises because the latent space is too constrained.
Using a three dimensional latent space alleviates the
problem, (not shown here due to space considerations,
but a script to run the experiment is available on line)
and we expect a two dimensional latent space which is
topologically cylindrical would also resolve the issue.
The back constrained model shows a squashed spiral
structure reflecting the periodic nature of the data and
maintains a representation of the angle of the run. The
changing angle of the run as the sequence proceeds is
depicted in Figure 3.
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Table 1. Nearest neighbour errors in latent space for the
vowels data (in data space 24 errors).

Method Isomap GP-LVM BC-GP-LVM
Errors 458 226 155

6.2. Vowel Data

As a further example we considered a single speaker
vowel data set. The data consists of the cepstral coef-
ficients and deltas of ten different vowel phonemes and
is acquired as part of a vocal joystick system (Bilmes
et al., 2006). A particular characteristic of this data
set is that PCA, used as the initialisation, fails to sep-
arate the data at all. As a result the non-back con-
strained model tends to fragment the different vowels.

We present results using the Isomap (Fig. 4(a)), the
GP-LVM (Fig. 4(b)) and the back constrained GP-
LVM (Fig. 4(c)). The GP-LVM obtains good sepa-
ration between the vowels, but does not maintain the
neighbourhood relations. Isomap preserves neighbour-
hood relations, but with severe overlap, particularly
between /u/, /o/, /ae/ and /ao/. The back con-
strained GP-LVM obtains good separation between
the different vowels, while keeping neighbourhood
structure. Table 1 offers a quantitative comparison.

7. Discussion

We have reviewed dimensionality reduction from the
perspective of distance preservation. Emphasizing lo-
cal distances preservation is a very common paradigm.
This paradigm is not followed by probabilistic ap-
proaches to dimensionality reduction, which instead
preserve dissimilarities. Inspired by the neuroscale
algorithm, we have shown how to introduce locality
preservation in the Gaussian process latent variable
model. We constrain the latent variables to be gen-
erated by a parametric “backwards” mapping, from
data space to latent space, the parameters of which
are learnt by maximizing the marginal likelihood of
the GP-LVM. We end up with two mappings, one top-
down (GP-LVM), and another bottom-up (back con-
straint), which is somewhat reminiscent of the wake-
sleep algorithm (Hinton et al., 1995). We illustrated
the advantages of adding locality preservation to the
GP-LVM on a small motion capture data set as well
as on a larger vowel data set.
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Figure 4. Visualisation of the vowel data using (a) Isomap
with 7 neighbours, (b) the GP-LVM and (c) the back
constrained GP-LVM. The different vowels are shown as
follows: /a/ cross /ae/ circle /ao/ plus /e/ asterix /i/
square /ibar/ diamond /o/ down triangle /schwa/ up tri-
angle and /u/ left triangle.
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A. Recreating the Experiments

The source code for re-running all the experiments de-
tailed here is available from http://www.dcs.shef.
ac.uk/~neil/fgplvm/, release 0.132. The motion
capture results can be recreated by demStick1.m
and demStick3.m. The vowels results can be recre-
ated with demVowelsIsomap.m, demVowels2.m and
demVowels3.m.
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