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ABSTRACT

The Relevance Vector Machine (RVM) introduced by
Tipping is a probabilistic model similar to the widespread
Support Vector Machines (SVM), but where the training
takes place in a Bayesian framework, and where predic-
tive distributions of the outputs instead of point estimates
are obtained. In this paper we focus on the use of RVM’s
for regression. We modify this method for training gene-
ralized linear models by adapting automatically the width
of the basis functions to the optimal for the data at hand.
Our Adaptive RVM is tried for prediction on the chaotic
Mackey-Glass time series. Much superior performance than
with the standard RVM and than with other methods like
neural networks and local linear models is obtained.

1. INTRODUCTION

Generalized linear models perform a nonlinear projection of
the input space into a transformed space by means of a set
of nonlinear basis functions. A pure linear model is then
applied to the transformed space, whose dimension is equal
to the number of nonlinear basis functions. Given an input
x, the output of the generalized linear model is given by

M
y(x) = Y w; d;(x) +wo D
j=1

where {¢;} are the nonlinear basis functions and {w;} are
the model ‘weights’. Unlike in the Support Vector Machines
(SVM) framework where the basis functions must satisfy
Mercer’s kernel theorem, in the RVM case there is no re-
striction on the basis functions [1, 2]. In our case, the basis
functions are chosen as Gaussians centered on each of the
training points. The model we use can be seen as a particu-
lar case of a single hidden layer RBF network with Gaussian
radial basis functions centered on the training points.
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Like SVM’s, RVM’s yield a sparse solution, i.e., the
model is built on a few ‘key’ training vectors only (like a
pruned version of the particular RBF network). But as in
the SVM case, no optimization of the basis functions is per-
formed along with the training of the model weights. We
propose a modification of the RVM algorithm that includes
the optimization of the basis functions, in particular of the
variance of the Gaussian functions that we use. We will
show that our Adaptive RVM allows the model to be virtu-
ally non-parametric, while the performance of basic RVM’s
depends dramatically on a good choice of the parameters of
the basis functions.

In the next section, we summarize the Bayesian frame-
work used to train RVM'’s, and in Section 3 we highlight the
importance of adapting the basis functions and present our
improvement to the RVM. Finally, we compare the Adap-
tive RVM algorithm with other methods for predicting the
Mackey-Glass chaotic time series.

2. THE RELEVANCE VECTOR MACHINE

Once the basis functions of the model described in equa-
tion (1) are defined, a maximum likelihood approach like
the normal equations could be used for training the model
weights {w; }. Training such a flexible linear model, with as
many parameters (weights) as training examples using max-
imum likelihood leads to over-fitting. Generalization capa-
bility can be pursued by doing the training in a Bayesian
framework.

Rather than attempting to make point predictions of the
optimal value of the model weight parameters, a prior dis-
tribution is defined over each of the weights. In the RVM
framework, Gaussian prior distributions are chosen:

a; 1
ﬁ exp (_Eaj wf) 2
where a; is the hyperparameter that governs the prior de-
fined over the weight w;.

Given a set of input-target training pairs {z;,t;} ,, as-
suming that the targets are independent and that the noise of
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the data is Gaussian with variance o2, the likelihood of the
training set can be written as

_ 1 .
p(t|w,02) = (271'02) N/ exp (—2—2 [t — <I>w||2> 3)
o

where t = (t1,...,tn)T, w = (w1,...,wn)T and @ is a
matrix whose rows contain the response of all basis func-
tions to the inputs (®);,. = [1, ¢1(x3), - - -, dn(xi)]-

With the prior and the likelihood distributions, the pos-
terior distribution over the weights can be computed using
Bayes rule

p(tlw, 0?)p(w|a)

wlt,a,0%) =
PRI T) = b 07)

(4)
where @ = (ap, - ..,an)T. The resulting posterior distri-
bution over the weights is the multi-variate Gaussian distri-
bution

pwlt, @, 0%) = N(p, ) (5)

where the covariance and the mean are respectively given
by:

by (c28"T® + A)! (6)
p = o 258t )

with A = diag(ao, . ..,an).

The likelihood distribution over the training targets, given
by equation (3), can be “marginalized” by integrating out
the weights:

ptia o) = [ pltw, o) pwla)do (®)
to obtain the marginal likelihood for the hyperparameters:
p(tle,0*) = N(0,C) ©)

where the covariance is given by C = ¢?I + ®A 17,

In the RVM scheme, the estimated value of the model
weights is given by the mean of the posterior distribution
(5), which is also the maximum a posteriori (MP) estimate
of the weights. The MP estimate of the weights depends
on the value of the hyperparameters a and of the noise o2.
The estimate of these two variables & and 2 is obtained by
maximizing the marginal likelihood (9).

The uncertainty about the optimal value of the weights
reflected by the posterior distribution (5) is used to express
uncertainty about the predictions made by the model. Given
a new input x,, the probability distribution of the corres-
ponding output is given by the predictive distribution

)=

P(te|Xs @, 52
/p(t*|x*,w,&2)p(w|t,d,&2)dw

(10)
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Fig. 1. Relevance Vectors chosen from the training set to
build a generalized linear model for prediction.

which has the Gaussian form
p(t*lx*7d7&2) ZN(y*;Uz) (11)

where the mean and the variance (uncertainty) of the pre-
diction are respectively

o2 = 62+ (®);.2(®)], (13)

1y

The maximization of the marginal likelihood (9) with
respect to a and o2 is performed iteratively, as there is no

closed solution [1]. In practice, during the iterative re-estimation

many of the hyperparameters «; approach infinity, yield-
ing a posterior distribution (5) of the corresponding weight
w; that tends to be a delta function centered around zero.
The corresponding weight is thus deleted from the model,
as well as its associated basis function ¢;(x). In the RVM
framework, each basis function ¢;(x) is associated to (or

centered around) a training example x; so that ¢; (x) = g(x;,x).

The model is built on the few training examples whose asso-
ciated hyperparameters do not go to infinity during the train-
ing process, leading to a sparse solution. These remaining
examples are called the Relevance Vectors (RV).

We here want to examine the RVM approach for time
series prediction. We choose a hard prediction problem,
the MacKey-Glass chaotic time series, which is well-known
for its strong non-linearity. Optimized non-linear models
can have a prediction error which is three orders of mag-
nitude lower than an optimized linear model [3]. Figure 1
shows a piece of the chaotic time series and we have fur-
thermore marked the training targets associated to the RV’s
extracted from a training set composed by 500 samples of
the Mackey-Glass chaotic time series.
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Fig. 2. Prediction mean square error with and without
adapting the variance of the basis functions.

The Mackey-Glass attractor is a non-linear chaotic sys-
tem described by the following equation:

2(t—7)

g (14)

where the constants are settoa = 0.2, b = 0.1 and 7 = 17.
The series is resampled with period 1 according to stan-
dard practice. The inputs are formed by L = 16 samples
spaced 6 periods from each other x;, = [2(k — 6),2(k —
12),...,z(k — 6L)] and the targets are chosen to be ¢;, =
z(k) to perform six steps ahead prediction [3].

The standard RVM approach is used, with Gaussian ba-
sis functions of fixed variance v? = 5.

3. ADAPTING THE BASISFUNCTIONS

In the training process of a generalized linear model (1)
under the RVM scheme described in the previous section,
only the weights and hyperparameters are optimized. It is
assumed that the basis functions are given. Yet the perfor-
mance of the model depends dramatically on the choice of
the basis functions and the value of their parameters. In the
work presented in this paper the basis functions are isotropic
Gaussian functions of the same variance, one centered on
each training point. The variance is held constant in the
conventional RVM approach, while we optimize it in the
Adaptive RVM.

The importance of the kernel width parameter is illus-
trated in Figure 2. We build a generalized linear model (1),
that we train using both the conventional RVM scheme, and
our adaptive version of it for a time series prediction prob-
lem. We here use 700 training examples, and a large set
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Fig. 3. Number of RV’s selected with and without adapting
the basis functions with respect to their initial width.

of 8500 test examples to monitor performance. The upper
curve in Figure 2 shows the mean square error obtained by
training the RVM for a set of increasing widths of the basis
functions. Each experiment is repeated 10 times: average
values are represented. We note that the performance heavi-
ly depends on the width of the basis functions. The simi-
lar experiment using the adaptive scheme, described below,
where the variance is optimized from variable initial values,
systematically improves performance relative to the fixed
variance case.

For a given number of training examples, the number of
RV chosen depends on the variance of the basis functions.
Figure 3 shows the number of RV’s chosen as a function of
the initial variance both for the conventional and the adap-
tive approaches. Our adaptive approach selects the number
of RV’s that allows the best performance, independently of
the initial value of the basis functions’ variance.

The RVM method iteratively maximizes the marginal
likelihood (9) with respect to the hyper-parameters @ and
to the noise o2. We can re-write the marginal likelihood to
explicitly condition it on the variance »? of the Gaussian
basis functions

p(tla, 0%, v?) = N(0,0°T+ @A18T)  (15)

which depends on v2 through the basis functions matrix ®.

In our approach, we maximize (15) with respect to v at
each iteration. This is done by maximizing the logarithm of
the marginal likelihood. As the width of the basis functions
is equal for all, we have to solve a 1D search problem. Eval-
uating the derivative of the logarithm of (15) with respect to
v2 is computationally much more expensive than just eval-
uating the marginal likelihood, hence we decided to use a
direct search method due to Hooke and Jeeves [4].



Mean square error vs. number of training examples

10 T T T T T T T
—@- RVM with fixed var = 1
RVM with fixed var = 25
—A— Adaptive RVM

Mean square error
[
o,
T

1(;0 15;0 2(‘)0 2‘50 3&0 35;0 40‘0 4‘50 560
Number of training examples

Fig. 4. Prediction mean square error as a function of the

number of training examples, for a big and a small value of

the variance for the conventional RVM and for the Adaptive

RVM.

From Figure 2 it appears clearly that for a given number
of training examples, there exists an optimal value the basis
function width »2. But this optimal value depends on the
number of training examples, as can be seen from Figure 4.
While the conventional RVM performs well for the number
of training examples that suits it’s fixed ©2, our approach
adapts v2 to an optimal value. Figure 5 illustrates how the
optimal value of v? decreases for larger training sets, the
number of RV’s was also found to increase (data not shown).

Train Test
Simple linear model | 9.7 x 1072 | 9.6 x 102
5 nearest-neighbors | 4.8 x 107 | 8.4 x 10~°
Pruned network 3.1x107% | 3.4x107°
Adaptive RVM 23x107% | 5.5 x107°

Table 1. Training and test mean square prediction error for
the Mackey-Glass chaotic time series.

We compare our Adaptive RVM with a simple linear
model, with a 5 nearest-neighbors local linear model and
with the pruned neural network used in [3] for 6 steps ahead
prediction. The training set contains 1000 examples, and the
test set 8500 examples. Average values of 10 repetitions are
presented. The Adaptive RVM uses an average of 108 RV’s
in this example. It is remarkable that the Adaptive RVM
so clearly outperforms a carefully optimized MLP, we cur-
rently investigate other time series prediction problems in
order to test the hypothesis that highly non-linear problems
are better modeled by non-parametric models with Bayesian
complexity control.
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Fig. 5. Value of the variance v chosen by the Adaptive
RVM for different numbers of training examples.

4. CONCLUSIONS

Sparse generalized linear models like the RVM (and SVM’s)
present excellent performance on time series prediction, but
are severely limited by the manual choice of the parame-
ters of the basis functions. To overcome this limitation, we
propose the Adaptive RVM that automatically optimizes the
parameters of the basis functions. The resulting time series
predictor outperforms a carefully optimized artificial neural
network. The approach can be generalized to locally adapt
the kernel widths yielding an even more flexible predictor,
however, optimization then becomes non-trivial.
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