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Abstract

In this paper, we consider Tipping’s relevance vector machine (RVM)
[1] and formalize an incremental training strategy as a variant of the
expectation-maximization (EM) algorithm that we call subspace EM.
Working with a subset of active basis functions, the sparsity of the RVM
solution will ensure that the number of basis functions and thereby the
computational complexity is kept low. We also introduce a mean field
approach to the intractable classification model that is expected to give
a very good approximation to exact Bayesian inference and contains the
Laplace approximation as a special case. We test the algorithms on two
large data sets with

���������
	�������
examples. The results indicate that

Bayesian learning of large data sets, e.g. the MNIST database is realistic.

1 Introduction

Tipping’s relevance vector machine (RVM) both achieves a sparse solution like the support
vector machine (SVM) [2, 3] and the probabilistic predictions of Bayesian kernel machines
based upon a Gaussian process (GP) priors over functions [4, 5, 6, 7, 8]. Sparsity is in-
teresting both with respect to fast training and predictions and ease of interpretation of the
solution. Probabilistic predictions are desirable because inference is most naturally for-
mulated in terms of probability theory, i.e. we can manipulate probabilities through Bayes
theorem, reject uncertain predictions, etc.

It seems that Tipping’s relevance vector machine takes the best of both worlds. It is a GP
with a covariance matrix spanned by a small number of basis functions making the compu-
tational expensive matrix inversion operation go from

���������
, where

�
is the number of

training examples to
�����������

(
�

being the number of basis functions). Simulation stud-
ies have shown very sparse solutions

�����
and good test performance [1]. However,

starting the RVM learning with as many basis functions as examples, i.e. one basis function
in each training input point, leads to the same complexity as for Gaussian processes (GP)
since in the initial step no basis functions are removed. That lead Tipping to suggest in
an appendix in Ref. [1] an incremental learning strategy that starts with only a single basis
function and adds basis functions along the iterations. The total number of basis functions
is kept low because basis functions are also removed. In this paper we formalize this strat-
egy using straightforward expectation-maximization (EM) [9] arguments to prove that the
scheme is the guaranteed convergence to a local maximum of the likelihood of the model
parameters.



Reducing the computational burden of Bayesian kernel learning is a subject of current
interest. This can be achieved by numerical approximations to matrix inversion [10] and
suboptimal projections onto finite subspaces of basis functions without having an explicit
parametric form of such basis functions [11, 12]. Using mixtures of GPs [13, 14] to make
the kernel function input dependent is also a promising technique. None of the Bayesian
methods can currently compete in terms of speed with the efficient SVM optimization
schemes that have been developed, see e.g. [3].

The rest of the paper is organized as follows: In section 2 we present the extended linear
models in a Bayesian perspective, the regression model and the standard EM approach.
In section 3, a variation of the EM algorithm, that we call the Subspace EM (SSEM) is
introduced that works well with sparse solution models. In section 4, we present the second
main contribution of the paper: a mean field approach to RVM classification. Section
5 gives results for the Mackey-Glass time-series and preliminary results on the MNIST
hand-written digits database. We conclude in section 6.

2 Regression

An extended linear model is build by transforming the input space by an arbitrary set of ba-
sis functions �����! #"%$& that performs a non-linear transformation of the ' -dimensional
input space. A linear model is applied to the transformed space whose dimension is equal
to the number of basis functions

�
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where
;=�9)@+-�BADC � 5 �9),+:�FE�GHG�GHE � 0 �9),+:�:I denotes the J th row of the design matrix

;
and 7 7 7 .� 7 5 E�GHGHG�E 7LK �NM is the weights vector. The output of the model is thus a linear superposition

of completely general basis functions. While it is possible to optimize the parameters of
the basis functions for the problem at hand [1, 15], we will in this paper assume that they
are given.

The simplest possible regression learning scenario can be described as follows: a set of�
input-target training pairs O�P + E�Q +�R K+ 3S5 are assumed to be independent and contaminated

with Gaussian noise of variance T � . The likelihood of the parameters 7 7 7 is given byU �*VXW 7 7 7 E T � �B.ZY:[]\ T ��^]_ Ka` �,bdcfehg 	 �[ T ��i Vj	k; 7 7 7 i �dl (2)

where
V�.m�*Q 5 EHGHG�GHE4Q K ��M is the target vector. Regularization is introduced in Bayesian

learning by means of a prior distribution over the weights. In general, the implied prior
over functions is a very complicated distribution. However, choosing a Gaussian prior on
the weights the prior over functions also becomes Gaussian, i.e. a Gaussian process. For
the specific choice of a factorized distribution with variance n _,5� :U � 7 � W n,� �B.po n,�[]\ bdcfe g 	 �[ nq� 7 �� l (3)

the prior over functions U �*rsW n n n � is t �*��EF;vu _q5 ;vMS� , i.e. a Gaussian process with covariance
function given by wsx]y �*),+4E4) � �B. 02z 3S5 �n z � z � P +:� � z � P � � (4)

where n n n . � nS{ E�GHG�GHE n K �NM and
u . |f}�~���� nS{ E�GHGHG�E n K � . We can now see how

sparseness in terms of the basis vectors may arise: if n _,5z .��
the � th basis vector



; z A�C � z �9) 5 �FE�GHGHG�E � z �*) K �>I�M , i.e. the � th column in the design matrix, will not contribute
to the model. Associating a basis function with each input point may thus lead to a model
with a sparse representations in the inputs, i.e. the solution is only spanned by a subset of
all input points. This is exactly the idea behind the relevance vector machine, introduced
by Tipping [16]. We will see in the following how this also leads to a lower computational
complexity than using a regular Gaussian process kernel.

The posterior distribution over the weights–obtained through Bayes rule–is a Gaussian dis-
tribution U � 7 7 7 W V�E n n n E T � �B. U �9VXW 7 7 7 E T ��� U � 7 7 7 W n n n �U �*VXW n n n E T � � . t �9V�W � � �/E���� (5)

where t �9VXW � � �aEF��� is a Gaussian distribution with mean
� � �

and covariance
�

evaluated at
V
.

The mean and covariance are given by� � � . T _ � ��; M V (6)� . � T _ � ; M ;���u=� _q5 (7)

The uncertainty about the optimal value of the weights captured by the posterior distribu-
tion (5) can be used to build probabilistic predictions. Given a new input

)a�
, the model

gives a Gaussian predictive distribution of the corresponding target
Q �U �*Q4�!W )S�!EX�n n n E �T � �s.<� U �9Q4��W )S�!E 7 7 7 E �T � � U � 7 7 7 W V!Ef�n n n E �T � ��� 7 7 7 . t �*Q4�XW ( �]E T �� � (8)

where ( � . ;=�*) � �6?��� �
(9)T �� . �T � ��;=�9)S���L?���?�;=�*)S��� M (10)

For regression it is natural to use ( � and T � as the prediction and the error bar on the
prediction respectively. The computational complexity of making predictions is thus���������������6�����H���

, where
�

is the number of selected basis functions (RVs) and
�

is the number of predictions. The two last terms come from the computation of
�

in eq.
(7).

The likelihood distribution over the training targets (2) can be “marginalized” with respect
to the weights to obtain the marginal likelihood, which is also a Gaussian distributionU �9V�W n n n E T � �/. � U �*VXW 7 7 7 E T � � U � 7 7 7 W n n n �f� 7 7 7 . t �9V�W �8E T ��� ��;vu _,5 ; M �/G (11)

Estimating the hyperparameters O�n � R and the noise T � can be achieved by maximizing
(11). This is naturally carried out in the framework of the expectation-maximization (EM)
algorithm since the sufficient statistics of the weights (that act as hidden variables) are
available for this type of model. In other cases e.g. for adapting the length scale of the
kernel [4], gradient methods have to be used. For regression, the E-step is exact (the lower
bound on the marginal likelihood is made equal to the marginal likelihood) and consists in
estimating the mean and variance (6) and (7) of the posterior distribution of the weights
(5). For classification, the E-step will be approximate. In this paper we present a mean
field approach for obtaining the sufficient statistics.

The M-step corresponds to maximizing the expectation of the log marginal likelihood with
respect to the posterior, with respect to T � and n n n , which gives the following update rules:n6�!�>�� . 5���f��d �¡�¢ �� ��£ ¤�¥ ¦ ¦ ¦�¥ § �4¨ . 5© �ª�«@¬ �9� , and

� T ��� �!�N� . 5K �4WW V®	k;¯�/W°W �
�±� T ����²�³°´Lµ �q¶ � � ,where the quantity ¶ � A��L	 n ��·B�>� is a measure of how “well-determined” each weight 7 �is by the data [17, 1]. One can obtain a different update rule that gives faster convergence.



1. Set nq� .¹¸ for all º . (
¸
is a very large number) Set » .p�

2. Update the set of active indexes  �
3. Perform an E-step in subspace 7 � such that º�¼½ �
4. Perform the M-step for all n,� such that º¾¼½ �
5. If visited all basis functions, end, else go to 2.

Figure 1: Schematics of the SSEM algorithm.

Although it is suboptimal in the EM sense, we have never observed it decrease the lower
bound on the marginal log-likelihood. The rule, derived in [1], is obtained by differentiation
of (11) and by an arbitrary choice of independent terms as is done by [17]. It makes use of
the terms O ¶ � R : n �!�>�� . ¶ �� �� � T � � ���>� . W°W V¿	¯;k�/WW ��À	 µ �q¶ � G (12)

In the optimization process many n � grow to infinity, which effectively deletes the cor-
responding weight and basis function. Note that the EM update and the Mackay update
for n � only implicitly depend upon the likelihood. This means that it is also valid for the
classification model we shall consider below.

A serious limitation of the EM algorithm and variants for problems of this type is that the
complexity of computing the covariance of the weights (7) in the E-step is Á ���Â�������d��� .
At least in the first iteration where no basis functions have been deleted

�Ã.±�
and we

are facing the same kind of complexity explosion that limits the applicability of Gaussian
processes to large training set. This has lead Tipping [1] to consider a constructive or
incremental training paradigm where one basis function is added before each E-step and
since basis functions are removed in the M-step, it turns out in practice that the total number
of basis functions and the complexity remain low. In the following section we introduce a
new algorithm that formalizes this procedure that can be proven to increase the marginal
likelihood in each step.

3 Subspace EM

We introduce an incremental approach to the EM algorithm, the Subspace EM (SSEM), that
can be directly applied to training models like the RVM that rely on a linear superposition
of completely general basis functions, both for classification and for regression. Instead of
starting with a full model, i.e. where all the basis functions are present with finite n values,
we start with a fully pruned model with all n � set to infinity. Effectively, we start with no
model. The model is grown by iteratively including some n6� previously set to infinity to
the active set of n ’s. The active set at iteration » ,  � , contains the indices of the basis
vectors with n less than infinity: 
5 .p� � . OHJ W J/¼Ä � _q5�Å n +aÆ%¸ RsÇ OH» R (13)

where
¸

is a finite very large number arbitrarily defined. Observe that  � contains at most
one more element (index) than  � _,5 . If some of the n ’s indexed by  � _q5 happen to reach¸

at the » -th step,  � can contain less elements than  � _,5 . In figure 1 we give a schematic
description of the SSEM algorithm.

At iteration » the E-step is taken only in the subspace spanned by the weights whose
indexes are in  � . This helps reducing the computational complexity of the M-step toÁ ������� , where

�
is the number of relevance vectors.
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Figure 2: Training on 400 samples of the Mackey-Glass time series, testing on 2000 cases.
Log marginal likelihood as a function of the elapsed CPU time (left) and corresponding
number of relevance vectors (right) for both SSEM and EM.

Since the initial value of n � is infinity for all º , for regression the E-step yields always
an equality between the log marginal likelihood and its lower bound. At any step » , the
posterior can be exactly projected on to the space spanned by the weights 7 � such thatº�¼h � , because the n z .ÉÈ for all � not in  � . Hence in the regression case, the SSEM
never decreases the log marginal likelihood. Figure 2 illustrates the convergence process
of the SSEM algorithm compared to that of the EM algorithm for regression.

Once all the examples have been visited, we switch to the batch EM algorithm on the active
set until some convergence criteria has been satisfied, for example until the relative increase
in the likelihood is smaller than a certain threshold.

4 Classification

Unlike the model discussed above, analytical inference is not possible for classification
models. Here, we will discuss a mean field approach initially proposed for Gaussian pro-
cesses [8] that are readily translated to RVMs. The mean field approach has the appealing
features that it retains the computational efficiency of RVMs, is exact for the regression and
reduces to the Laplace approximation in the limit where all the variability comes from the
prior distribution.

We consider binary
Qa.ÉÊv�

classification using the probit likelihood with ’input’ noise T �U �*QHW ( �9)@�4�/. bHË4Ì®g Q ( �9)@�T l E
(14)

where '�Í AÏÎ _�Ð � ` ��� Í�Ñ�Ò [�\ and
b�Ë�Ì � P ��AÀÓLÔ_�Õ '�Í is an error function (or cumulative

Gaussian distribution). The advantage of using this sigmoid rather than the commonly
used 0/1-logistic is that we under the mean field approximation can derive an analytical
expression for the predictive distribution U �9Q��XW )S�]E4V���.ÏÓ U �9Q4��W ( � U � ( W )S�!E�V���� ( needed for
making Bayesian predictions. The central assumption in mean field theory can be boiled
down to saying that U � ( W ) � E4V�� is approximated by a Gaussian distribution. This leads to
the following approximation for the predictive distributionU �*Q4�!W )S�!E�V��B. bHË4Ì®g Q4� ( �T � l (15)



where the mean and variance of U � ( W )6�!E�V�� : ( � and T �� are given by the eqs. (9) and (10).
However, the mean and covariance of the weights are no longer found by analytical expres-
sions, but has to be obtained from a set of non-linear mean field equations that also follow
from equivalent assumptions of Gaussianity for the training set outputs ( �9) + � in averages
over reduced (or cavity) posterior averages.

In the following, we will only state the results which follows from combining the RVM
Gaussian process kernel (4) with the results of [8]. The sufficient statistics of the weights
are written in terms of a set of

�������
mean field parameters� � � . u _q5 ; M×ÖÖ Ö (16)� . Y uD��; MLØ ; ^ _q5

(17)

where
Ö +SA ÙÙ�Ú�Ûª/Ü°ÝßÞ � (�à+ E�á à+ � T ��� andÞ � ( à+ E�á à+ � T � �âA � U �9QN+�W ( à+ � Í×ã á à+ � T � � '�Í . b�Ë�Ìåä QN+ (�à+æ á à+ � T ��ç G

(18)

The last equality holds for the likelihood eq. (14) and ( à+ and
á à+ are the mean and variance

of the so called cavity field. The mean value is (èà+ .é;=�*) + �s?]��	%á à+ Ö + . The distinction
between the different approximation schemes is solely in the variance

á à+ :
á à+ .ê� is the

Laplace approximation,
á à+ .ìë;íu _q5 ;íM,î +°+ is the so called naive mean field theory and

an improved estimate is available from the adaptive TAP mean field theory [8]. Lastly, the
diagonal matrix

Ø
is the equivalent of the noise variance in the regression model (compare

eqs. (17) and (7) and is given by ï + .�	 Ù�ð ªÙ�ÚHÛª Ñ �N�f��á à+ Ù�ð ªÙ�ÚHÛª � . This set of non-linear equations
are readily solved (i.e. fast and stable) by making Newton-Raphson updates in

� � �
treating

the remaining quantities as help variables:ñ � � �½.p� � ��u _,5 ; M Ø ;�� _,5 ��u _q5 ; M8Ö Ö Ö 	½�� �@�/.<�=�-; M×ÖÖ Ö 	�uv�� �@� (19)

The computational complexity of the E-step for classification is augmented with respect to
the regression case by the fact that it is necessary to construct and invert a

�óòh�
matrix

usually many times (typically 20), once for each step of the iterative Newton method.

5 Simulations

We illustrate the performance of the SSEM for regression on the Mackey-Glass chaotic
time series, which is well-known for its strong non-linearity. Optimized non-linear models
can have a prediction error which is three orders of magnitude lower than an optimized
linear model [18]. In [15] we showed that the RVM has an order of magnitude superior
performance than carefully tuned neural networks for time series prediction on the Mackey-
Glass series. The inputs are formed by ô .ê��õ samples spaced 6 periods from each other) z .öC Í � � 	¯õ��FE Í � � 	%��[!�dEHG�GHGdE Í � � 	kõ ô �>I and the targets are chosen to be

Q z . Í � � � to
perform six steps ahead prediction (see [18] for details). We use Gaussian basis functions
of fixed variance ÷ � .p��� . The test set comprises ø�ù ��ú examples.

We perform prediction experiments for different sizes of the training set. We perform in
each case

���
repetitions with different partitions of the data sets into training and test. We

compare the test error, the number of RVs selected and the computer time needed for the
batch and the SSEM method. We present the results obtained with the growth method
relative to the results obtained with the batch method in figure 3. As expected, the relative
computer time of the growth method compared with the batch method decreases with size
of the training set. For a few thousand examples the SSEM method is an order of magnitude
faster than the batch method. The batch method proved only to be faster for

�����
training
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Figure 3: Left: Regression, mean values over 10 repetitions of relative test error, number
of RVs and computer time for the Mackey-Glass data, up to 2400 training examples and
5804 test examples. Right: Classification, Log marginal likelihood, test and training errors
while training on one class against all the others, 60000 training and 10000 test examples.

examples, and could not be used with data sets of thousands of examples on the machine on
which we run the experiments because of its high memory requirements. This is the reason
why we only ran the comparison for up to

[]úX�!�
training example for the Mackey-Glass

data set.

To illustrate the performance in classification problems we choose a very large data set, the
MNIST database of handwritten digits [19], with

õ��!���!�
training and

���!���!�
test images.

The images are of size
[ ù ò
[ ù pixels. We use PCA to project them down to

��õ
dimensional

vectors. We only perform a preliminary experiment consisting of a one against all binary
classification problem to illustrate that Bayesian approaches to classification can be used on
very large data sets with the SSEM algorithm. We train on

��û!ú ù ú examples (the
õXü]úX[

one’s
and another

õ�ü�ú�[
random non-one digits selected at random from the rest) and we use ù ���

basis functions for both the batch and Subspace EM. In figure 3 we show the convergence of
the SSEM in terms of the log marginal likelihood and the training and test probabilities of
error. The test probability of error we obtain is

��Gýü�ú
percent with the SSEM algorithm and��G õ!õ

percent with the batch EM. Under the same conditions the SSEM needed ø�ø minutes
to do the job, while the batch EM needed

� ù õ minutes. The SSEM gives a machine with 28
basis functions and the batch EM one with 31 basis functions. We intend to implement an
RVM for multi-class classification and train it on the whole MNIST dataset with the SSEM
algorithm, which we estimate will take

û
days in total on a Linux cluster. It is impossible to

do such a thing with the batch EM, except on machines capable of inverting
õ!���!�!�¿ò#õ��!���!�

matrices.

6 Conclusion

We have presented a new approach to Bayesian training of linear models, based on a sub-
space extension of the EM algorithm that we call Subspace EM (SSEM). The new method
iteratively builds models from a potentially big library of basis functions. It is especially
well-suited for models that are constructed such that they yield a sparse solution, i.e. the so-
lution is spanned by small number

�
of basis functions, which is much smaller than

�
, the

number of examples. A prime example of this is Tipping’s relevance vector machine that
typically produces solutions that are sparser than those of support vector machines. With



the SSEM algorithm the computational complexity and memory requirement decrease from���*�h���
and

���*�����
to
�����������

(somewhat higher for classification) and
���*�����

. For
classification, we have presented a mean field approach that are expected to be a very good
approximation to the exact inference and contains the widely used Laplace approximation
as an extreme case. We have applied the SSEM algorithm to both a large regression and a
large classification data sets. Although preliminary for the latter, we believe that the results
demonstrate that Bayesian learning is possible for very large data sets. Similar methods
should also be applicable beyond supervised learning.
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