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{jqc,jl}@imm.dtu.dk agathe@dcs.gla.ac.uk carl@tuebingen.mpg.de

ABSTRACT

The object of Bayesian modelling is the predictive distribution,
which in a forecasting scenario enables evaluation of forecasted
values and their uncertainties. In this paper we focus on reliably
estimating the predictive mean and variance of forecasted values
using Bayesian kernel based models such as the Gaussian Process
and the Relevance Vector Machine. We derive novel analytic ex-
pressions for the predictive mean and variance for Gaussian kernel
shapes under the assumption of a Gaussian input distribution in the
static case, and of a recursive Gaussian predictive density in itera-
tive forecasting. The capability of the method is demonstrated for
forecasting of time-series and compared to approximate methods.

1. INTRODUCTION

The problem of nonlinear forecasting is relevant to numerous ap-
plication domains e.g. in financial modelling and control. This
paper focuses on providing better estimates of the forecasted value
as well as its uncertainty. The object of interest in Bayesian mod-
elling framework [1] is the predictive density which contains all
information about the forecasted value given the history of known
values. For many Bayesian models the predictive density can only
be approximated using Monte-Carlo sampling, local expansions,
or variational approaches. However, when using Bayesian Gaus-
sian shaped kernel models such as the Gaussian Process (GP) with
a Gaussian kernel [1, 2] or the Relevance Vector Machine (RVM)
[3, 4] the predictive mean and variance are given by analytic ex-
pressions under mild assumptions. Moreover the Bayesian kernel
methods have proven to be very efficient nonlinear models [2, 4],
with flexible approximation capabilities and high generalization
performance.

We focus on the nonlinear auto-regressive (NAR) model with
Gaussian innovations although more flexible nonlinear time-series
models [5] sometimes are more efficient. Multi-step ahead fore-
casting can be done as direct forecast or as iterative one-step ahead
forecasting. In [6] it is concluded that iterative forecasting usually
is superior to direct forecasting. Generally the complexity of the
nonlinear mapping in direct forecasting increases with the forecast
horizon and for a fixed length time-series the number of training
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examples decreases with the forecast horizon. In iterative forecast-
ing the complexity of the nonlinear mapping is much lower than
in the direct case, the number of training samples higher, but the
performance is diminished by the uncertainty of the forecasted val-
ues. Consequently the involved effects provide a delicate trade-off.
We restrict this work to iterative forecasting, which offers the ad-
ditional advantage that multi-step ahead forecasts can be obtained
with only one trained model.

In classical iterative forecasting only the predictive mean is it-
erated, here we consider an improvement to the methods suggested
in [7] which iterate both the predictive mean and variance. This
corresponds to using the model in recall/test phase under uncer-
tain input. We do not consider training the model under uncertain
inputs, which has been addressed for nonlinear model in [8] and
for linear models in e.g, [9].

In section 2 we introduce the Bayesian modelling framework.
In section 3 we consider the evaluation of the prediction density
with uncertain inputs, which is formulated for time-series forecast-
ing in section 4. Finally section 5 provides numerical experiments,
that demonstrate the capability of the proposed method.

2. BAYESIAN KERNEL MODELLING

Consider aD-dimensional column input vectorx and a single out-
puty, then the nonlinear model is defined as1

y = f(x) + ε, (1)

wheref(·) is a nonlinear function implemented as a GP or a RVM,
andε ∼ N (0, σ2

ε) is additive i.i.d. Gaussian noise with variance
σ2

ε . Suppose that the training data set isD = {xi, yi}N
i=1, where

N is the number of training samples. When using a GP [1, 2] or a
RVM [3, 4], the predictive distribution of the output,y, is Gaussian
[10],

p(y|x,D) = N (µ(x), σ2(x)), (2)

wherex is an arbitrary input at which we perform prediction. For
a GP the mean and variance of the predictive distribution are given
by

µ(x) = k>(x)K−1y, σ2
GP(x) = 1−k>(x)K−1k(x), (3)

1We tacitly assume thaty has zero mean, although a bias term can be
included, see further [10].
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whereCGP(xi, xj) is the kernel, which we set to the commonly
used Gaussian form2. We have

CGP(xi, xj) = exp[−(xi − xj)
>Λ−1(xi − xj)/2], (4)

Λ = diag[λ2
1, . . . , λ

2
D], (5)

K = {Kij} = {CGP(xi, xj) + σ2
εδij} (6)

k(x) = [CGP(x, x1), · · · , CGP(x, xN )]>, (7)

y = [y1, · · · , yN ]>. (8)

The kernel width hyper-parameters,λp, are fitted by maximizing
the evidence (ML-II) using conjugate gradient, see e.g. [2].

For the RVM, let{φj(x)} and{αj} with j = 1, 2, · · · , M be
respectively the basis functions and the weight hyper-parameters,
whereM is the number of relevance vectors. Since typicallyM <
N , the RVM yields sparse kernels, spanned by a finite number of
basis functions [3, 10]. For the RVM the predictive distribution (2)
has mean and variance specified by

µ(x) = φ>(x)wMP, σ2
RVM(x) = φ>(x)Σ−1φ(x), (9)

where, choosing Gaussian basis functions, we have

wMP = σ−2
ε ΣΦ>y, (10)

Σ = (σ−2
ε Φ>Φ + A)−1, (11)

A = diag[α1, · · · , αM ], (12)

φj(x) = exp[−(xj − x)>Λ−1(xj − x)/2], (13)

φ(x) = [φ1(x), · · · , φM (x)]>, (14)

Φ = {Φij} = {φj(xi)}, i = [1; N ], j = [1; M ]. (15)

The details of training the RVM are described in [3, 4].

3. PREDICTION WITH UNCERTAIN INPUT

Assume that the test inputx can not be observed directly and the
uncertainty is modeled asx ∼ p(x) = N (u, S), with meanu
and covariance matrixS. The resulting predictive distribution is
then obtained by marginalizing over the test input

p(y|u, S,D) =

∫
p(y|x,D)p(x) dx. (16)

The principle is shown in Figure 1. The marginalization can in
most cases only be carried out using Monte-Carlo numerical ap-
proximation techniques, however, in the case of Gaussian kernels3

it is possible to obtain exact analytical expressions for the mean
and variance of the marginalized predictive distribution:

m(u, S) =

∫
y · p(y|u, S,D) dy, and (17)

v(u, S) =

∫
(y −m(u, S))2p(y|u, S,D) dy. (18)

The proposed method is an extension of the work presented in [7],
which makes additional approximations, viz. Taylor series expan-
sions ofµ(x) andσ2(x) to first and second order aroundu and

2The exponential in equation (4) is usually multiplied by an additional
hyperparameter whose value is fitted during training. We here set it to1
for clarity, which requires normalizing the data to unit variance.

3Exact analytical results can also be obtained for polynomial kernels,
C(xp, xq) ∝ |xp − xq |r , e.g. a linear model.
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Fig. 1. Prediction with uncertain input.On thex-axis, the dashed
line represents the Gaussian input distribution, with mean located
by the triangle, from which we draw 100 samples (dots under it).
In the middle of the figure, the solid line represents the true under-
lying function. We fit a model to it, and propagate the 100 input
samples through the model (dots close to the true function).On
they-axiswe project the 100 predicted values (dots) and use them
to estimate the predictive density (dashed line), with mean located
by the triangle. The error bar with a circle and the error bar with
a star show the mean and 95% confidence interval of the Gaussian
approximation with exact computation of mean and variance and
of the method with Taylor expansion respectively.

S. Using properties of the conditional mean and variance

m(u, S) = Ex[Ey[y|x]] = Ex[µ(x)], (19)

v(u, S) = Ex[Vy[y|x]] + Vx[Ey[y|x]]

= Ex[σ2(x)] + Vx[µ(x)], (20)

whereEx[·], Vx[·] denote the expectation and variance wrt.x.
When using Gaussian kernels in GPs and Gaussian basis func-
tions in RVMs, the expressions forµ(x) in eq. (3) and (9) are
Gaussian shaped functions ofx and the expressions forσ2(x) are
products of Gaussian shaped functions inx. Therefore the inte-
grants involved in determiningm(u, S) andv(u, S) are products
of Gaussian shaped functions, which allows an analytical calcula-
tion. In [10] it is shown that

m(u, S) = β>l. (21)

For the GPβ = {β1, · · · , βN} = K−1y and for the RVMβ =
{β1, · · · , βM} = wMP. Vectorl = {l1, · · · , lN} is given by

lj = |Λ−1S + I|−
1
2

· exp

[
−1

2
(u− xj)

>(Λ + S)−1(u− xj)

]
, (22)

whereI is the identity matrix. Note that ifS is the zero matrix,
thenl = k(u) andm(u, S) = µ(u) as would be expected.

Further, for the GP

v(u, S) = σ2
GP(u) + Tr

(
L̃(ββ> −K−1)

)
+ Tr

(
(k(u)k(u)> − ll>)ββ>

)
, (23)
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whereL̃ = L− k(u)k(u)> and the elements of matrixL are

Lij = ki(u)kj(u) · |2Λ−1S + I|−
1
2 (24)

· exp
[
2(u− xd)>Λ−1(2Λ−1 + S−1)−1Λ−1(u− xd)

]
,

and wherexd = 1
2
(xi + xj). For the RVM

v(u, S) = σ2
RVM(u) + Tr

(
L̃(ββ> + Σ−1)

)
+ Tr

(
[k(u)k(u)> − ll>]ββ>

)
. (25)

Notice that both for GPs and RVMs, whenS is the zero matrix,̃L
is also the zero matrix, againl = k(u), andv(u, S) = σ2(u).

4. APPLICATION TO TIME-SERIES FORECASTING

Suppose that{yt} are the ordered samples of a time-series, where
t is an integer time index. We wish to make time-series forecast-
ing using a NAR model (1), where the inputs are formed by a col-
lection of previous output values,xt = [yt−1, yt−2, . . . , yt−L],
where the integerL is the size of the lag space.

Given that we have observed the valuesyT ≡ {yt}T
t=1, T

being the number of observed samples, computing the predictive
density of the valueyT+1 is readily given by the model from (2)
as

p(yT+1|xT+1) = N (µ(xT+1), σ
2(xT+1))

The predictive density of the valueyT+2 (two steps ahead) de-
pends onxT+1, which now contains a stochastic element. In gen-
eral, the predictive distribution ofyT+k, with k ≥ 2, requires
integrating out the uncertainty of the input:

p(yT+k|yT ) =

∫
p(yT+k|xT+k) p(xT+k|yT ) dxT+k. (26)

It is straightforward that this scheme leads to a recursive den-
sity estimation. The integral in (26) has no analytical solution.
A näıve approach to the recursion is to ignore the
uncertainty in the distribution of the input by setting
p(xT+k) = δ(x−[µ(xT+k−1), . . . , µ(xT+k−L)]>)4, thus prop-
agating only the mean predictions. This method yields very poor
error-bars, since it in some way only considers one step ahead pre-
dictions, treating the previous predicted values as exact, and is
therefore overconfident, [7]. Alternatively, one can approximate
the predictive density ofyT+k by a Gaussian density and compute
only the mean and variance ofp(yT+k|yT ). By doing this one en-
sures that the input distributionp(xT+k|yT ) is always Gaussian,
which allows to use the results described in section 3 for comput-
ing the mean and variance ofyT+K , see eq. (26). This can be done
exactly (for Gaussian or polynomial kernels) or in an approximate
fashion, [7]. The recursive mechanism works because the pre-
dictive distribution ofyT+1 at the first step is Gaussian (26), and
therefore the input distribution ofxT+1 is also Gaussian. We call
this procedure of recursively approximating the predictive density
by a Gaussian the Recursive Gaussian Predictive Density (RGPD),
and distinguish between exact-RGPD for the case of exact compu-
tation of mean and variance and approximate-RGPD for the case
where the model is approximated by a Taylor expansion, [7].

4Whereδ(x) is 1 for x = 0 and0 otherwise. Ifk < L, we have simply
µ(xn) = yn for n < T .

In the RGPD scheme, the input distribution is given by5

p(xT+k|yT ) = N (uT+k,ST+k), (27)

where

uT+k = [m(uT+k−1, ST+k−1), . . . , m(uT+k−L, ST+k−L)],

and whereST+k is iteratively computed by using the fact that its
first column is given by

(ST+k)1:L,1 = cov(yT+k, xT+k) =
∑

j

βjLj(cj − uT+k),

(28)
wherecj = (Λ−1 + S−1)−1(Λ−1xj + S−1u), refer to [10].

5. EXPERIMENTS

We examine the comparative performance of the exact and
approximate-RGPD on a hard prediction problem, the Mackey-
Glass chaotic time series [11], which is well-known for its strong
non-linearity. In [4] we showed that non-linear models, in particu-
lar RVMs, have a prediction error four orders of magnitude lower
than optimized linear models. The Mackey-Glass attractor is a
non-linear chaotic system described by the following equation:

dz(t)

dt
= −bz(t) + a

z(t− τ)

1 + z(t− τ)10
(29)

where the constants are set toa = 0.2, b = 0.1 and τ = 17.
The series is re-sampled with period1 according to standard prac-
tice. The inputs are formed byL = 16 samples spaced 1 periods
from each otherxk = [zk−1, zk−2, . . . , zk−L] and the targets are
chosen to beyk = zk.

We train a GP model with Gaussian kernel on only 100 exam-
ples — enough to obtain a 1-step ahead normalized mean squared
error on the order of10−4. Besides, we normalize the data and
contaminate it with a small amount of Gaussian noise with vari-
ance10−3. Figure 2 shows the result of making 100 iterative
predictions using a GP model, both for the exact-RGPD and the
approximate-RGPD methods. By informal visual inspection, the
error-bars of the exact-RGPD seem to be better than those of the
approximate-RGPD. Consequently the exact-RGPD produces a bet-
ter predictive density, which we show in figure 3. The mean value
of the predictions seems also to be a slightly closer to the true tar-
get values for the exact-RGPD than for the approximate-RGPD.

In order to better evaluate the performance of the proposed
methods, for a given prediction horizon, we compute the nega-
tive log predictive density, the squared error and the absolute error.
While the two last measures only take into consideration the mean
of the Gaussian predictive distribution, the first one also takes into
account its variance. We average over200 repetitions with dif-
ferent starting points (chosen at random from the series), and rep-
resent averages of the three loss measures for prediction horizons
ranging from 1 to 100. Figure 3 shows the results. The means are
slightly better for the exact-RGPD, but the predictive distribution
is much improved. The better error-bars obtained by the exact-
RGPD result in a lower value of the negative log predictive den-
sity for all values of the prediction horizon. The performance of
the näıve iterative method is identical to that of the approximate-
RGPD in terms of absolute and squared error. In terms of pre-
dictive density (since it produces unrealistic small error-bars) its
performance is so poor that it is not worth reporting.

5If k < L, we have simplyµ(xn) = yn for n < T .
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Fig. 2. 100 iterated predictions for the exact-RGPD (dashed) and
approximate-RGPD (dotted): for each the thicker lines represent
the mean of the predictive distributions and the two thinner lines
around represent the upper and lower bounds of the 95% confi-
dence interval of the Gaussian predictive distributions. The solid
line shows the true target values.

6. CONCLUSIONS

We have derived analytical expressions for the exact computation
of the mean and variance of the marginalized predictive distribu-
tion for uncertain Gaussian test inputs. This analytical expressions
are valid for Gaussian processes and the Relevance Vector Ma-
chine (extended linear models) with Gaussian or polynomial ker-
nels or basis functions. Our results extend the approximate method
presented in [7], where the mean prediction was unaffected by the
input uncertainty. In our case the input uncertainty biases the mean
prediction, by smoothing, which is interesting in itself for pre-
dictions on noisy inputs. Furthermore, in the context of iterated
time-series forecasting, our exact-RGPD not only gives much bet-
ter error-bars, but the mean predictions are closer to the true values,
both in terms of absolute and squared error. We are currently in-
vestigating efficient Monte Carlo methods to avoid the Gaussian
approximation of the recursive predictive density.
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