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Synopsis

Denne afhandling omhandler Gaussiske Processer (GP) og Relevans Vektor
Maskiner (RVM), som begge er specialtilfælde af probabilistiske lineære mod-
eller. Vi anskuer begge modeller fra en Bayesiansk synsvinkel og er tvunget til
at benytte approximativ Bayesiansk behandling af indlæring af to grunde. Først
fordi den fulde Bayesianske løsning ikke er analytisk mulig og fordi vi af princip
ikke vil benytte metoder baseret p̊a sampling. For det andet, som understøtter
kravet om ikke at bruge sampling er ønsket om beregningsmæssigt effektive mod-
eller. Beregningmæssige besparelser opn̊as ved hjælp af udtyndning: udtyndede
modeller har et stort antal parametre sat til nul. For RVM, som vi behan-
dler i kapitel 2 vises at det er det specifikke valg af Bayesiank approximation
som resulterer i udtynding. Probabilistiske modeller har den vigtige egenskab
der kan beregnes prediktive fordelinger istedet for punktformige prediktioner.
Det vises ogs̊a at de resulterende undtyndede probabilistiske modeller implicerer
ikke-intuitive a priori fordelinger over funktioner, og ultimativt utilstrækkelige
prediktive varianser; modellerne er mere sikre p̊a sine prediktioner jo længere
væk man kommer fra træningsdata. Vi foresl̊ar RVM*, en modificeret RVM
som producerer signifikant bedre prediktive usikkerheder. RVM er en speciel
klasse af GP, de sidstnævnte giver bedre resultater og er ikke-udtyndede ikke-
parametriske modeller. For komplethedens skyld, i kapitel 3 studerer vi en speci-
fik familie af approksimationer, Reduceret Rank Gaussiske Processer (RRGP),
som tager form af endelige udviddede lineære modeller. Vi viser at Gaussiaske
Processer generelt er ækvivalente med uendelige udviddede lineære modeller.
Vi viser ogs̊a at RRGP, ligesom RVM lider under utilstraekkelige prediktive
varianser. Dette problem løses ved at modificere den klassiske RRGP metode
analogt til RVM*. I den sidste del af afhandlingen bevæger vi os til problemstill-
inger med usikre input. Disse er indtil nu antaget deterministiske, hvilket er det
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gængse. Her udleder vi ligninger for prediktioner ved stokastiske input med GP
og RVM og bruger dem til at propagere usikkerheder rekursivt multiple skridt
frem for tidsserie prediktioner. Det tilader os at beregne fornuftige usikkerheder
ved rekursiv prediktion k skridt frem i tilfælde hvor standardmetoder som ignor-
erer den akkumulerende usikkerhed vildt overestimerer deres konfidens. Til slut
undersøges et meget sværere problem: træning med usikre inputs. Vi undersøger
den fulde Bayesianske løsning som involverer et uløseligt integral. Vi foresl̊ar
to preliminære løsninger. Den første forsøger at “gætte” de ukendte “rigtige”
inputs, og kræver finjusteret optimering for at undg̊a overfitning. Den kræver
ogs̊a a priori viden af output støjen, hvilket er en begrænsning. Den anden
metode beror p̊a sampling fra inputenes a posterior fordeling og optimisering af
hyperparametrene. Sampling har som bivirkning en kraftig forøgelse af bereg-
ningsarbejdet, som igen er en begrænsning. Men, success p̊a legetøjseksempler
er opmuntrende og skulle stimulere fremtidig forskning.



Summary

This thesis is concerned with Gaussian Processes (GPs) and Relevance Vector
Machines (RVMs), both of which are particular instances of probabilistic linear
models. We look at both models from a Bayesian perspective, and are forced
to adopt an approximate Bayesian treatment to learning for two reasons. The
first reason is the analytical intractability of the full Bayesian treatment and
the fact that we in principle do not want to resort to sampling methods. The
second reason, which incidentally justifies our not wanting to sample, is that
we are interested in computationally efficient models. Computational efficiency
is obtained through sparseness: sparse linear models have a significant num-
ber of their weights set to zero. For the RVM, which we treat in Chap. 2,
we show that it is precisely the particular choice of Bayesian approximation
that enforces sparseness. Probabilistic models have the important property of
producing predictive distributions instead of point predictions. We also show
that the resulting sparse probabilistic model implies counterintuitive priors over
functions, and ultimately inappropriate predictive variances; the model is more
certain about its predictions, the further away from the training data. We pro-
pose the RVM*, a modified RVM that provides significantly better predictive
uncertainties. RVMs happen to be a particular case of GPs, the latter having
superior performance and being non-sparse non-parametric models. For com-
pleteness, in Chap. 3 we study a particular family of approximations to Gaussian
Processes, Reduced Rank Gaussian Processes (RRGPs), which take the form of
finite extended linear models; we show that GPs are in general equivalent to
infinite extended linear models. We also show that RRGPs result in degenerate
GPs, which suffer, like RVMs, of inappropriate predictive variances. We solve
this problem in by proposing a modification of the classic RRGP approach, in
the same guise as the RVM*. In the last part of this thesis we move on to the
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problem of uncertainty in the inputs. Indeed, these were until now considered
deterministic, as it is common use. We derive the equations for predicting at
an uncertain input with GPs and RVMs, and use this to propagate the un-
certainty in recursive multi-step ahead time-series predictions. This allows us
to obtain sensible predictive uncertainties when recursively predicting k-steps
ahead, while standard approaches that ignore the accumulated uncertainty are
way overconfident. Finally we explore a much harder problem: that of training
with uncertain inputs. We explore approximating the full Bayesian treatment,
which implies an analytically intractable integral. We propose two preliminary
approaches. The first one tries to “guess” the unknown “true” inputs, and re-
quires careful optimisation to avoid over-fitting. It also requires prior knowledge
of the output noise, which is limiting. The second approach consists in sampling
from the inputs posterior, and optimising the hyperparameters. Sampling has
the effect of severely incrementing the computational cost, which again is lim-
iting. However, the success in toy experiments is exciting, and should motivate
future research.



Preface

This thesis was prepared partly at Informatics Mathematical Modelling, at the
Technical University of Denmark, partly at the Department of Computer Sci-
ence, at the University of Toronto, and partly at the Max Planck Institute
for Biological Cybernetics, in Tübingen, Germany, in partial fulfilment of the
requirements for acquiring the Ph.D. degree in engineering.

The thesis deals with probabilistic extended linear models for regression, un-
der approximate Bayesian learning schemes. In particular the Relevance Vector
Machine and Gaussian Processes are studied. One focus is guaranteeing compu-
tational efficiency while at the same implying appropriate priors over functions.
The other focus is to deal with uncertainty in the inputs, both at test and at
training time.

The thesis consists of a summary report and a collection of five research papers
written during the period 2001–2004, and elsewhere published.

Tübingen, May 2004

Joaquin Quiñonero Candela
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Chapter 1

Introduction

In this thesis we address the univariate regression problem. This is a supervised
learning problem, where we are given a training dataset composed of pairs of
inputs (in an Euclidean space of some dimension) and outputs or targets (in a
unidimensional Euclidean space). We study two models for regression: the Rel-
evance Vector Machine (RVM) and the Gaussian Process (GP) model. Both are
instances of probabilistic extended linear models, that perform linear regression
on the (possibly non-linearly transformed) inputs. For both models we will con-
sider approximations to a full Bayesian treatment, that yield sparse solutions in
the case of the RVM, and that allow for computationally efficient approaches in
the case of GPs. These approximations to the full Bayesian treatment come at
the cost of poor priors over functions, which result in inappropriate and counter-
intuitive predictive variances. Since the predictive variances are a key outcome
of probabilistic models, we propose ways of significantly improving them, while
preserving computational efficiency. We also address the case where uncertainty
arises in the inputs, and we derive the equations for predicting at uncertain test
inputs with GPs and RVMs. We also discuss ways of solving a harder task:
that of training GPs with uncertain inputs. Below we provide a more detailed
description of the main three parts of this thesis: the study of RVMs, the study
of computationally efficient approximations to GP, and the study of predicting
and training on uncertain inputs.

In the Bayesian perspective, instead of learning point estimates of the model
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parameters, one considers them as random variables and infers posterior dis-
tributions over them. These posterior distributions incorporate the evidence
brought up by the training data, and the prior assumptions on the parameters
expressed by means of prior distributions over them. In Chap. 2 we describe
the extended linear models: these map the inputs (or non-linear transforma-
tions of them) into function values as linear combinations under some weights.
We discuss Bayesian extended linear models, with prior distributions on the
weights, and establish their relation to regularised linear models, as widely used
in classical data fitting. Regularisation has the effect of guaranteeing stability
and enforcing smoothness through forcing the weights to remain small. We then
move on to discussing the Relevance Vector Machine (RVM), recently introduced
by Tipping (2001). The RVM is an approximate Bayesian treatment of extended
linear models, which happens to enforce sparse solutions. Sparseness means that
a significant number of the weights are zero (or effectively zero), which has the
consequence of producing compact, computationally efficient models, which in
addition are simple and therefore produce smooth functions. We explain how
sparseness arises as a result of a particular approximation to a full Bayesian
treatment. Indeed, full Bayesian methods would not lend themselves to sparse-
ness, since there is always posterior mass on non-sparse solutions. We apply
the RVM to time-series predictions, and show that much can be gained from
adapting the basis functions that are used to non-linearly map the inputs to the
space on which linear regression is performed. Training RVMs remains compu-
tationally expensive -cubic in the number of training examples- and we present a
simple incremental approach that allows the practitioner to specify the compu-
tational effort to be devoted to this task. We believe that one essential property
of probabilistic models, such as the RVM, is the predictive distributions that
they provide. Unfortunately, the quality of such distributions depends on that
of effective prior over functions. The RVM, with localised basis functions, has
a counterintuitive prior over functions, where maximum variation of the func-
tion happens at the training inputs. This has the undesirable consequence that
the predictive variances are largest at the training inputs, and then shrink as
the test input moves away from them. We propose the RVM*, a simple fix to
the RVM at prediction time that results in much more appropriate priors over
functions, and predictive uncertainties.

Gaussian Processes (GPs) for regression are a general case of RVMs, and a
particular case of extended linear models where Gaussian priors are imposed over
the weights, and their number grows to infinity. For GPs, the prior is directly
specified over function outputs, which are assumed to be jointly Gaussian. The
inference task consists in finding the covariance function, which expresses how
similar two outputs should be as a function of the similarity between their
inputs. GPs are well known for their state of the art performance in regression
tasks. Unfortunately, they suffer from high computational costs in training and
testing, since these are cubic in the number of training samples for training, and
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quadratic for predicting. Although one may see RVMs as sparse approximations
to GPs, they achieve this in an indirect manner. On the other hand other
computationally efficient approaches are explicit approximations to GPs. In
Chap. 3 we interest ourselves in one such family of approximations, the Reduced
Rank Gaussian Processes (RRGPs). We give an introduction to GPs, and show
the fact that in general they are equivalent to extended linear models with
infinitely many weights. The RRGP approach is based on approximating the
infinite linear model with a finite one, resulting in a model similar in form to
the RVM. Learning an RRGP implies solving two tasks: one is the selection of
a “support set” (reduced set of inputs) and the second to infer the parameters
of the GP covariance function. We address how to solve these tasks, albeit
separately, since the joint selection of support set and parameters is a challenging
optimisation problem, which poses the risk of over-fitting (fitting the training
data too closely, at the expense of a poor generalisation). Like RVMs, RRGPs
suffer from poor predictive variances. We propose a modification to RRGPs,
similar to that of the RVM*, which greatly improves the predictive distribution.

When presented with pairs of inputs and outputs at training time, or with in-
puts only at test time, it is very common to consider only the outputs as noisy.
This output noise is then explicitly modelled. There situations, however, where
it is acceptable to consider the training inputs as deterministic, but it might be
essential to take into account the uncertainty in the test inputs. In Chap. 4 we
derive the equations for predicting at an uncertain input having Gaussian distri-
bution, with GPs and RVMs. We also present a specific situation that motivated
this algorithm: iterated time-series predictions with GPs, where the inputs are
composed of previous predictions. Since GPs produce predictive distributions,
and those are fed into future inputs to the model, we know that these inputs will
be uncertain with known Gaussian distribution. When predicting k-steps ahead,
we rely on k− 1 intermediate predictions, all of which are uncertain. Failing to
take into account this accumulated uncertainty implies that the predictive dis-
tribution of the k-th prediction is very overconfident. The problem of training a
GP when the training inputs are noisy is a harder one, and we address it without
the ambition of providing a definitive solution. We propose to approximations
to the full integration over uncertain inputs, which is analytically intractable. In
a first approach, we maximise the joint posterior over uncertain inputs and GP
hyperparameters. This has the interesting consequence of imputing the “true”
unseen inputs. However, the optimisation suffers from very many undesirable
spurious global maxima, that correspond to extreme over-fitting. For this rea-
son we propose to anneal the output noise, instead of learning it. Since we do
not have any satisfactory stopping criterion, previous knowledge of the actual
output noise is required, which is unsatisfactory. The second approach consists
in sampling from the posterior on the uncertain inputs, while still learning the
hyperparameters, in the framework of a “stochastic” EM algorithm. While the
results are encouraging, sampling severely increases the already high computa-
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tional cost of training GPs, which restricts the practical use of the method to
rather small training datasets. However, the success on toy examples of this
preliminary work does show that there is very exciting work to be pursued in
learning with uncertain inputs.



Chapter 2

Sparse Probabilistic Linear
Models and the RVM

Linear models form the function outputs by linearly combining a set of inputs
(or non-linearly transformed inputs in the general case of “extended” linear
models). In the light of some training data, the weights of the model need
either to be estimated, or in the Bayesian probabilistic approach a posterior
distribution on the weights needs to be inferred.

In traditional data fitting, where the goal is to learn a point estimate of the model
weights, it has since long been realised that this estimation process must be
accompanied by regularisation. Regularisation consists in forcing the estimated
weights to be small in some sense, by adding a penalty term to the objective
function which discourages the weights from being large. Regularisation has two
beneficial consequences. First, it helps guarantee stable solutions, avoiding the
ridiculously large values of the weights that arise from numerical ill-conditioning,
and allowing us to solve for the case where there are fewer training examples
than weights in the model. Second, by forcing the weights to be smaller than
the (finite) training data would suggest, smoother functions are produced which
fit the training data somewhat worse, but that fit new unseen test data better.
Regularisation therefore helps improve generalisation. The Bayesian framework
allows to naturally incorporate the prior knowledge that the weights should be
small into the inference process, by specifying a prior distribution. The Bayesian
treatment of linear models is well established; O’Hagan (1994, Chap. 9) for
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example gives an extensive treatment. We introduce probabilistic extended
linear models in Sect. 2.1, and establish the connection between Gaussian priors
on the model weights and regularisation.

Sparseness has become a very popular concept, mostly since the advent of Sup-
port Vector Machines (SVMs), which are sparse extended linear models that
excel in classification tasks. A tutorial treatment of SVMs may be found in
Schölkopf and Smola (2002). A linear model is sparse if a significant num-
ber of its weights is very small or effectively zero. Sparseness offers two key
advantages. First, if the number of weights that are non-zero is reduced, the
computational cost of making predictions on new test points decreases. Com-
putational cost limits the use of many models in practice. Second, sparseness
can be related to regularisation in that models with few non-zero weights pro-
duce smoother functions that generalise better. Concerned with sparseness and
inspired by the work of MacKay (1994) on prior distributions that automati-
cally select relevant features, Tipping (2001) recently introduced the Relevance
Vector Machine (RVM), which is a probabilistic extended linear model with
a prior on the weights that enforces sparse solutions. Of course, under a full
Bayesian treatment there is no room for sparseness, since there will always be
enough posterior probability mass on non-sparse solutions. As with many other
models, the full Bayesian RVM is analytically intractable. We present the RVM
in Sect. 2.2, and explain how sparseness arises from a specific approximation
to the full Bayesian treatment. In Sect. 2.3 we give an example of the use of
the RVM for non-linear time series prediction with automatic adaptation of the
basis functions. One weak aspect of the RVM is its high training computational
cost of O(N3), where N is the number of training examples. This has motivated
us to propose a very simple incremental approach to training RVMs, the Sub-
space EM (SSEM) algorithm, which considerably reduces the cost of training,
allowing the practitioner to decide how much computational power he wants to
devote to this task. We present our SSEM approach in Sect. 2.4.

We believe probabilistic models to be very attractive because they provide full
predictive distributions instead of just point predictions. However, in order for
these predictive distributions to be sensible, sensible priors over function values
need to be specified in the first place, so as to faithfully reflect our beliefs.
Too often “convenience” priors are used that fail to fulfil this requirement. In
Sect. 2.5 we show that the prior over the weights defined for the RVM implies
an inappropriate prior over functions. As a consequence the RVM produces
inappropriate predictive uncertainties. To solve this problem, while retaining
its nice sparseness properties, we propose a fix at prediction time to the RVM.
Our new model, the RVM*, implies more natural priors over functions and
produces significantly better predictive uncertainties.
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2.1 Extended Linear Models

We will consider extended linear models that map an input Euclidean space of
some dimension into a single dimensional Euclidean output space. Given a set
of training inputs {xi|i = 1, . . . , N} ⊂ RD organised as rows in matrix X , the
outputs of an extended linear model are a linear combination of the response of
a set of basis functions {φj(x)|j = 1, . . . ,M} ⊂ [RD → R]:

f(xi) =
M∑

j=1

φj(xi)wj = φ(xi) w, f = Φ w . (2.1)

where f = [f(x1), . . . , f(xN )]> are the function outputs, w = [w1, . . . , wM ]>

are the weights and φj(xi) is the response of the j-th basis function to in-
put xi. We adopt the following shorthand: φ(xi) = [φ1(xi), . . . , φM (xi)] is
a row vector containing the response of all basis functions to input xi, φj =

[φj(x1), . . . , φj(xN )]> is a column vector containing the response of basis func-
tion φj(x) to all training inputs and Φ is an N×M matrix whose j-th column is
vector φj and whose i-th row is vector φ(xi). For notational clarity we will not
explicitly consider a bias term, i.e. a constant added to the function outputs.
This is done without loss of generality, since it would suffice to set one basis
function φbias(x) = 1 for all x, and the corresponding weight wbias would be
the bias term.

The unknowns of the model are the weights w. To estimate their value, one
needs a set of training targets y = [y1, . . . , yN ]>, with each yi ⊂ R associated to
its corresponding training input xi. We will make the common assumption that
the observed training outputs differ from the corresponding function outputs by
Gaussian iid. noise of variance σ2:

yi = f(xi) + εi, εi = N (0, σ2) , (2.2)

where it is implicitly assumed that the “true” function can be expressed as an
extended linear model. The noise model allows us to write the likelihood of the
weights, and its negative logarithm L, which can be used as a target function
for estimating w:

p(y|X,w, σ2) ∼ N (Φ w, σ2 I), L =
1

2
log(2π)+

1

2
logσ2+

1

2
||y−Φ w||2, (2.3)

where I is the identity matrix. Maximum Likelihood (ML) estimation of w can
be achieved by minimising L: it is the negative of a monotonic transformation
of the likelihood. Taking derivatives and equating to zero one obtains:

∂L
∂w

= −w>Φ>y −w>Φ>Φ = 0 ⇒ w = (Φ>Φ)−1Φ>y, (2.4)
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which is the classical expression given by the normal equations. This is not
surprising: (2.3) shows that maximising the likelihood wrt. w under a Gaussian
noise assumption is equivalent to minimising the sum of squared residuals given
by ||y − Φ w||2, which is how the normal equations are obtained. A biased
estimate of the variance of the noise can be obtained by minimising L. Taking
derivatives and equating to zero gives σ2 = 1

N ||y − Φ w||2: this is the mean
of the squared residuals. The unbiased estimate of the variance would divide
the sum of squared residuals by N − 1 instead, corresponding to the number of
degrees of freedom.

The normal equations are seldom used as given in (2.4), for at least two reasons.
First, notice that if M > N , we have an under-complete set of equations and
there are infinitely many solutions for w. Matrix Φ>Φ of sizeM×M then has at
most rank N and can therefore not be inverted. A usual solution is to regularise
the normal equations, by adding a ridge term controlled by a regularisation
parameter λ:

w = (Φ>Φ + λ I)−1Φ>y. (2.5)

This is equivalent to minimising a penalised sum of squared residuals ||y −
Φ w||2+λ ||w||2. Clearly, the regularisation term, λ ||w||2, penalises large weight
vectors and selects from the infinite number of solutions one for which the norm
of w is smallest. The regularised normal equations correspond to Tikhonov
regularisation (Tikhonov and Arsenin, 1977) where the smallest eigenvalue of
the problem is forced to be λ.

The second reason for regularising the normal equations is to obtain a better
generalisation performance, that is to reduce the error made when predicting at
new unseen test inputs. An example may help visualise the relation between reg-
ularisation and generalisation. Let us consider radial basis functions of squared
exponential form:

φj(xi) = exp

(
−1

2

D∑

d=1

(Xid −Xjd)
2/θ2

d

)
, (2.6)

where Xid is the d-th component of xi and where θd is a lengthscale parameter
for the d-th dimension. Let us consider a one dimensional input example, and
set θ1 = 1.1 We generate a training set, shown in Fig. 2.1 by the crosses, by
taking 20 equally spaced points in the [−10, 10] interval as inputs. The outputs
are generated by applying the ‘sinc’ function (sin(x)/x) to the inputs and adding
noise of variance 0.01. We decide to use M = N basis functions, centred on
the training inputs, and learn the weights of the extended linear model from
the normal equations and from the regularised normal equations. Notice that in

1We will discuss ways of learning the parameters of the basis functions later in Sect. 2.3.
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Figure 2.1: Impact of regularisation on generalisation. Non-regularised (left)
and regularised (right) extended linear model with λ = 1. The training data is
represented by the crosses, and the thin lines are the basis functions multiplied
by their corresponding weights. The thick lines are the functions given by the
extended linear model, obtained by adding up the weighted basis functions.

this example regularisation is not needed for numerical reasons: Φ>Φ can safely
be inverted. In the left pane of Fig. 2.1 We present the basis functions weighted
by the w obtained from the non-regularised normal equations (thin lines), and
the corresponding function (thick line) obtained by adding them up. The right
pane represents the same quantities for the regularised case. The weights in
the regularised case are smaller, and the response of the model is smoother and
seems to over-fit less than in the non-regularised case. The mean square error
on a test set with 1000 inputs equally spaced in the [−12, 12] interval is 0.066
without regularisation versus 0.033 with regularisation. Regularisation forces
the weights to be small, giving smoother models that generalise better.

Two questions arise: first, we know how to estimate w and σ2, but only if the
regularisation parameter λ is given. How can λ be learned? Certainly not by
minimising the penalised sum of squared residuals ||y−Φw||2 + λ ||w||2, since
this would give a trivial solution of λ = 0. We address this question in the
next section, where we show that a simple Bayesian approach to the extended
linear model gives rise to a regularisation term as in (2.5). The second question
is why the penalisation term, λ ||w||2, is in terms of the squared 2-norm of w.
One reason is analytic convenience: it allows to obtain the regularised normal
equations. Other penalisation terms have been proposed, the 1-norm case being
a very popular alternative (Tibshirani, 1996). While the 2-norm penalty term
uniformly reduces the magnitude of all the weights, the 1-norm has the property
of shrinking a selection of the weights and of therefore giving sparse solutions.
Sparseness will be a central issue of this chapter, and we will see in Sect. 2.2
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that it can also arise when using 2-norm penalty terms in a Bayesian setting
with hierarchical priors.

2.1.1 A Bayesian Treatment

The Bayesian approach to learning provides with an elegant framework where
prior knowledge (or uncertainty) can directly be expressed in terms of prob-
ability distributions, and incorporated into the model. Let us consider what
we have learned from the previous section: for an extended linear model, forc-
ing the weights to be small gives smoother functions with better generalisation
performance.

This prior knowledge about the weights can be expressed by treating them as
random variables and defining a prior distribution that expresses our belief about
w before we see any data. One way of expressing our knowledge is to impose
that every weight be independently drawn from the same Gaussian distribution,
with zero mean and variance σ2

w:

p(wj |σ2
w) ∼ N (0, σ2

w) , p(w|σ2
w) ∼ N (0, σ2

w I) . (2.7)

Our knowledge about the weights will be modified once we observe data. The
data modifies the prior through the likelihood of the observed targets, and leads
to the posterior distribution of the weights via Bayes rule:

p(w|y, X, σ2
w , σ

2) =
1

Z
p(y|X,w, σ2) p(w|σ2

w) ∼ N (µ,Σ) , (2.8)

where Z = p(y|X, σ2
w , σ

2) is here a normalisation constant about which we will
care later, when we consider learning σ2

w and σ2. Since both the likelihood and
the prior are Gaussian in w, the posterior is also a Gaussian distribution with
covariance Σ and mean µ, respectively given by:

Σ = (σ−2 Φ>Φ + σ−2
w I)−1 , µ = σ−2Σ Φ>y . (2.9)

In the previous section, given some data we learned one value of the weights for
a particular regularisation constant. Now, once we observe data and for a given
noise and prior variance of the weights, we obtain a posterior distribution on w.
The extended linear model has thus become probabilistic in that function values
are now a linear combination of random variables w. For a given a new test
input x∗, instead of a point prediction we now obtain a predictive distribution
p(f(x∗)|x∗,y, X, σ2

w, σ
2), which is Gaussian2 with mean and variance given by:

m(x∗) = φ(x∗)µ , v(x∗) = φ(x∗) Σφ(x∗)
> . (2.10)

2f(x∗) is a linear combination of the weights, which have a Gaussian posterior distribution.
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We will later analyse the expression for the predictive variance, and devote
to it the whole of Sect. 2.5. The predictive mean is often used as a point
prediction, which is optimal for quadratic loss functions (in agreement with
the Gaussian noise assumption we have made). We observe that the predictive
mean is obtained by estimating the weights by the maximum of their posterior
distribution. This is also called the Maximum A Posteriori (MAP) estimate
of the weights. Since the model is linear in the weights and the posterior is a
symmetric unimodal distribution, it is clear that this would be the case. The
MAP estimate of the weights corresponds to the mean of their posterior, which
can be rewritten as:

µ =

(
Φ>Φ +

σ2

σ2
w

I

)−1

Φ>y . (2.11)

This expression is identical to that of the regularised normal equations, (2.5), if
we set the regularisation parameter to λ = σ2/σ2

w. The regularisation parameter
is inversely proportional to the signal-to-noise ratio (SNR), since the variance of
the extended linear model is proportional to the prior variance of the weights σ2

w.
The larger the noise relative to the prior variance of the function, the smaller
the weights are forced to be, and the smoother the model.

Under a correct Bayesian approach, using the results described thus far implies
prior knowledge of σ2 and of σ2

w. However, it is reasonable to assume that we do
not possess exact knowledge of these quantities. In such case, we should describe
any knowledge we have about them in terms of a prior distribution, obtain a
posterior distribution and integrate them out at prediction time. The disad-
vantage is that in the vast majority of the cases the predictive distribution will
not be Gaussian anymore, and will probably not even be analytically tractable.
Consider the noisy version y∗ of f(x∗). With knowledge of σ2

w and σ2, the
predictive distribution of y∗ is p(y∗|x∗,y, X, σ2

w , σ
2) ∼ N (m(x∗), v(x∗) + σ2).

Now, given a posterior distribution p(σ2
w, σ

2|y, X) this predictive distribution
becomes:

p(y∗|x∗,y, X) =

∫
p(y∗|x∗,y, X, σ2

w, σ
2) p(σ2

w, σ
2|y, X)dσ2

w dσ2 . (2.12)

Approximating the posterior on σ2
w and σ2 by a delta function at its mode,

p(σ2
w , σ

2|y, X) ≈ δ(σ̂2
w , σ̂

2) where σ̂2
w and σ̂2 are the maximisers of the posterior,

brings us back to the simple expressions of the case where we had knowledge of
σ2
w and σ2. The predictive distribution is approximated by replacing the values

for σ2
w and σ2 by their MAP estimates: p(y∗|x∗,y, X) ≈ p(y∗|x∗,y, X, σ̂2

w, σ̂
2).

The goodness of this approximation is discussed for example by Tipping (2001).

Under this approximate Bayesian scheme we need to learn the MAP values of
σ2
w and σ2, which is equivalent to maximising their posterior, obtained again by
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applying Bayes rule:

p(σ2
w, σ

2|y, X) ∝ p(y|X, σ2
w, σ

2) p(σ2
w, σ

2) . (2.13)

If one now decides to use an uninformative improper uniform prior p(σ2
w, σ

2),
maximising the posterior becomes equivalent to maximising the marginal likeli-
hood p(y|X, σ2

w, σ
2) which was the normalising constant in (2.8). The marginal

likelihood, also called evidence by MacKay (1992),

p(y|X, σ2
w , σ

2) =

∫
p(y|X,w, σ2) p(w|σ2

w) dw ∼ N (0,K) , (2.14)

has the nice property of being Gaussian since it is the integral of the product of
two Gaussians in w. It has zero mean since y is linear in w, and the prior on
w has zero mean. Its covariance is given by K = σ2 I +σ2

w Φ Φ>. Maximisation
of the marginal likelihood to infer the value of σ2

w and σ2 is also referred to as
Maximum Likelihood II (MLII). Unfortunately, there is no closed form solution
to this maximisation in our case. Equivalently, it is the logarithm of the marginal
likelihood that is maximised:

L = log p(y|X, σ2
w , σ

2) = −1

2
log(2π)− 1

2
log |K| − 1

2σ2
y>K−1y , (2.15)

with derivatives:

∂L
∂σ2

w

= −1

2
Tr(Φ Φ>K−1) +

1

2σ2
y>K−1Φ Φ>K−1y ,

∂L
∂σ2

= − N

2σ2
+

1

2σ4
y>K−1y .

(2.16)

It is common to use a gradient descent algorithm to minimise the negative of L.
For the example of Fig. 2.1, minimising L using conjugate gradients we obtain
σ̂2
w = 0.0633 and σ̂2 = 0.0067. This translates into a regularisation constant,
λ = 0.1057, which coincidentally is fairly close to our initial guess.

2.2 The Relevance Vector Machine

The Relevance Vector Machine (RVM), introduced by Tipping (2001) (see also
Tipping, 2000) is a probabilistic extended linear model of the form given by
(2.1), where as in Sect. 2.1.1 a Bayesian perspective is adopted and a prior
distribution is defined over the weights. This time an individual Gaussian prior
is defined over each weight independently:

p(wj |αj) ∼ N (0, αj) , p(w|A) ∼ N (0,A) , (2.17)
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which results in an independent joint prior over w, with separate precision
hyperparameters A = diagα, with α = [α1, . . . , αM ]. 3 For given α, the RVM
is then identical to our extended linear model of the previous section, where
σ2
w I is now replaced by A.

Given α and σ2, the expressions for the mean and variance of the predictive
distribution of the RVM at a new test point x∗ are given by (2.10). The Gaus-
sian posterior distribution over w is computed as in previous section, but its
covariance is now given by:

Σ = (σ−2 Φ>Φ + A)−1 , (2.18)

and its mean (and MAP estimate of the weights) by:

µ =
(
Φ>Φ + σ2 A

)−1

Φ>y , (2.19)

which is the minimiser of a new form of penalised sum of squared residuals
||y−Φ w||2 +σ2 w>A w. Each weight is individually penalised by its associated
hyperparameter αj : the larger the latter, the smaller the weight wj is forced to
be. Sparse models can thus be obtained by setting some of the α’s to very large
values (or effectively infinity). This has the effect setting the corresponding
weights to zero, and therfore of “pruning” the corresponding basis functions
from the extended linear model. The basis functions that remain are called the
Relevance Vectors (RVs). Sparsity is a key characteristic of the RVM, and we
will later see how it arises, due to the particular way in which α is learned. Like
in previous section, in the RVM framework the posterior distribution of α and
σ2 is approximated by a delta function centred on the MAP estimates. This
predictive distribution of the RVM is therefore derived as we have just done, by
assuming α and σ2 known, given by their MAP estimates.

Tipping (2001) proposes the use of Gamma priors on the α’s and of an in-
verse Gamma prior on σ2. In practice, he proposes to take the limit case of
improper uninformative uniform priors. A subtle point needs to be made at
this point. In practice, since α and σ2 need to be positive, it is the poste-
rior distribution of their logarithms that is considered and maximised, given
by p(logα, logσ2|y, X) ∝ p(y|X, logα, logσ2) p(logα, logσ2). For MAP esti-
mation to be equivalent to MLII, uniform priors are defined over a logarithmic
scale. This of course implies non-uniform priors over a linear scale, and is ulti-
mately responsible for obtaining sparse solutions, as we will discuss in Sect. 2.2.2.
Making inference for the RVM corresponds thus to learning α and σ2 by MLII,
that is by maximising the marginal likelihood in the same manner as we de-
scribed in the previous section. The RVM marginal likelihood (or evidence) is

3We have decided to follow Tipping (2001) in defining prior precisions instead of prior
variances, as well as to follow his notation.
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given by:

p(y|X,α, σ2) =

∫
p(y|X,w, σ2) p(w|α) dw ∼ N (0,K) , (2.20)

where the covariance is now K = σ2 I + Φ A−1 Φ>. It is the logarithm of
the evidence that is in practice maximised (we will equivalently minimise its
negative), given by (2.15) with the RVM covariance.4 In practice, one can
exploit that M < N because of sparseness to compute the negative log evidence
in a computationally more efficient manner (see Tipping, 2001, App. A):

L =
1

2
log(2π)+

N

2
logσ2− 1

2
log |Σ|− 1

2

M∑

j=1

logαj+
1

2σ2
y>(y−Φµ) . (2.21)

One approach to minimising the negative log evidence is to compute derivatives,
this time with respect to the log hyperparameters:

∂L
∂ logαj

= −1

2
+

1

2
αj (µ2

j + Σjj) ,

∂L
∂ logσ2

=
N

2
− 1

2σ2

(
Tr[Σ Φ>Φ] + ||y −Φµ||2

)
,

(2.22)

and to again use a gradient descent algorithm. At this point one may wonder
whether the negative log evidence, (2.21), is convex. It has been shown by Faul
and Tipping (2002) that for a fixed estimate of the noise variance, the Hessian
of the log evidence wrt. α is positive semi-definite (the fact that it is not strictly
positive has to do with infinity being a stationary point for some of the α’s).
Therefore, given the noise, L is only convex as a function of a single α given the
rest, and has multiple minima as a function of α. As a function both of α and
σ2 the negative log evidence has also multiple minima, as we show in a simple
example depicted in Fig. 2.2. We use the same toy data as in the example in
Fig. 2.1 (one dimensional input space, noisy training outputs generated with
a ‘sinc’ function) and the same form of squared exponential basis functions
centred on the 20 training inputs. We minimise L 100 times wrt. α and σ2

from different random starting points using conjugate gradients. We present
the result of each minimisation in Fig. 2.2 by a patch. The position in along the
x-axis shows the number of RVs, and that along the y-axis the value of L at the
minimum attained. The radius of the patch is proportional to the test mean
squared error of the model obtained, and the colour indicates the logarithm base
10 of the estimated σ2. The white patches with black contour and a solid circle
inside are solutions for which the estimated σ2 was much smaller than for the
other solutions (more than 5 orders of magnitude smaller); it would have been

4Interestingly, all models considered in this Thesis have log marginal likelihood given by
(2.15): the differentiating factor is the form of the covariance matrix K.
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Figure 2.2: Multiple local minima of the RVM negative log evidence. Every
patch represents one local minimum. The radius is proportional to the test mean
squared error of the corresponding model. The colour indicates the magnitude
of the estimated noise variance σ2 in a logarithm base 10 scale. The white
patches with black contour and a solid black circle inside correspond to cases
where the estimated σ2 was very small (< 10−9) and it was inconvenient to
represent it with our colourmap.

inconvenient to represent them in the same colour map as the other solutions,
but you should think of them as being really dark. The reason why less than 100
patches can be observed is that identical local minima are repeatedly reached.
Also, there is no reason to believe that other local minima do not exist, we may
just never have reached them.

We observe that the smaller the estimate of the noise, the more RVs are retained.
This makes sense, since small estimates of σ2 imply that high model complexity
is needed to fit the data closely. Sparse solutions are smooth, which fits well
with a higher noise estimate. Except for the extreme cases with very small
σ2, the more RVs and the smaller noise, the smaller the negative log evidence.
The extreme cases of tiny noise correspond to poor minima; the noise is too
small compared to how well the data can be modelled, even with full model
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complexity. These, it seems to us, are undesirable minima, where probably the
log |σ2 I + Φ A−1 Φ>| term of L has enough strength locally to keep the noise
from growing to reasonable values. The smallest minimum of L was found for
16 RVs and σ2 ≈ 10−4. The corresponding model, however, has a quite poor
test error. The model with smallest mean squared test error (0.029, versus
0.033 for the regularised normal equations in previous section) is obtained for
11 RVs, with L ≈ −10.5, above the smallest minimum visited. We plot both
solutions in Fig. 2.3. Indeed, the experiment shows that a small negative log
evidence does not imply good generalisation, and that learning by minimising
it leads to over-fitting: the training data are too well approximated, at the
expense of poor performance on new unseen test points. We believe over-fitting
is a direct consequence of MLII learning with an overly complex hyperprior.
Sparseness may save the day, but it only seems to arise when the estimated
noise is reasonably large. If MLII is the method to be used, it could be sensible
not to use a uniform prior (over a logarithmic scale) for σ2, but rather one
that clearly discourages too small noises. Priors that enforce sparseness are
not well accepted by Bayesian purists, since pruning is in disagreement with
Bayesian theory. See for example the comments of Jaynes (2003, p. 714) on
the work of O’Hagan (1977) on outliers. Sparseness is nevertheless popular
these days, as the popularity of Support Vector Machines (SVMs) ratifies (see
for example the recent book by Schölkopf and Smola, 2002), and constitutes
a central characteristic of the RVM, which we can now see as a semi-Bayesian
extended linear model. We devote Sect. 2.2.2 to understanding why sparsity
arises in the RVM.

2.2.1 EM Learning for the RVM

Tipping (2001) does not suggest direct minimisation of the negative log evi-
dence for training the RVM, but rather the use of an approximate Expectation-
Maximisation (EM) procedure (Dempster et al., 1977). The integration with
respect to the weights to obtain the marginal likelihood makes the use of the
EM algorithm with the weights as “hidden” variables very natural. Since it is
most common to use the EM for maximisation, L will now become the (posi-
tive) log evidence; we hope that the benefit of convenience will be superior to
the confusion cost of this change of sign. To derive the EM algorithm for the
RVM we first obtain the log marginal likelihood by marginalising the weights
from the joint distribution of y and w:

L = log p(y|X,α, σ2) = log

∫
p(y,w|X,α, σ2) dw , (2.23)

where the joint distribution over y and w is both equal to the likelihood times
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Figure 2.3: RVM models corresponding to two minima of the negative log likeli-
hood. Impact of regularisation on generalisation. Left : global minimum found,
L ≈ −11.2, σ2 ≈ 10−4 and 16 RVs, corresponds to over-fitting. (Right): model
with best generalisation performance, L ≈ −10.5, σ2 ≈ 10−2 and 11 RVs. The
training data is represented by the crosses, and the thin lines are the basis func-
tions multiplied by their corresponding weights. The thick lines are the functions
given by the extended linear model, obtained by adding up the weighted basis
functions. The training points corresponding to the RVs are shown with a circle
on top.

the prior on w and to the marginal likelihood times the posterior on w:

p(y,w|X,α, σ2) = p(y|X,w,α, σ2) p(w|α) = p(w|y, X,α, σ2) p(y|X,α, σ2) .

(2.24)

By defining a “variational” probability distribution q(w) over the weights and
using Jensen’s inequality, a lower bound on L can be obtained:

L = log

∫
q(w)

p(y,w|α, σ2)

q(w)
dw ,

≥
∫
q(w) log

p(y,w|α, σ2)

q(w)
dw ≡ F(q, σ2,α) ,

(2.25)

The EM algorithm consists in iteratively maximising the lower bound F(q, σ2,α)
(or F for short), and can be seen as a coordinate ascent technique. In the Expec-
tation step (or E-step) F is maximised wrt. the variational distribution q(w)
for fixed parameters α and σ2, and in the Maximisation step (M-step) F is
maximised wrt. to the hyperparameters α and σ2 for fixed q(w).

Insight into how to perform the E-step can be gained by re-writing the lower
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bound F as:

F = L+D
(
q(w)||p(w|y, X,α, σ2)

)
, (2.26)

where D
(
q(w)||p(w|t, X,α, σ2)

)
is the Kullback-Leibler (KL) divergence be-

tween the variational distribution q(w) and the posterior distribution of the
weights. The KL divergence is always a positive number and is only equal to
zero if the two distributions it takes as arguments are identical. The E-step
corresponds thus to making q(w) equal to the posterior on w, which implies
F = L,5 or an “exact” E-step. Since the posterior is Gaussian, the E-step
reduces to computing its mean and covariance, µ and Σ, given by (2.19) and
(2.18).

To perform the M-step, it is useful to rewrite F in a different manner:

F =

∫
q(w) log p(y,w|X,α, σ2) dw −H (q(w)) , (2.27)

where H (q(w)) is Shannon’s entropy of q(w), which is an irrelevant constant
since it does not depend onα or σ2. The M-step consists therefore in maximising
the average of the log joint distribution of y and w over q(w) with respect to
the parameters σ2 and α; this quantity is given by:

∫
q(w) log p(y,w|X,α, σ2) dw =

1

2
log |A| − 1

2
Tr
[
A Σ + Aµµ>

]

−N
2

logσ2 − 1

2σ2

(
‖y−Φµ‖2 + Tr[Σ Φ>Φ]

)
,

(2.28)

and computing its derivatives wrt. α and σ2 is particularly simple, since the
“trick” of the EM algorithm is that now q(w) and therefore µ and Σ are fixed
and do not depend on α or σ2. We get:

∂F
∂αj

=
1

2αj
− 1

2

(
Σjj + µ2

j

)
,

∂F
∂σ2

= − N

2σ2
+

1

2σ4

(
Tr[Σ ΦTΦ] + ‖y−Φµ‖2

)
.

(2.29)

Observe that if we want to take derivatives wrt. to the logarithm of α and σ2

instead, all we need to do is multiply the derivatives we just obtained by αj and
σ2 respectively. The result are the derivatives of the log marginal likelihood
obtained in the previous section (taking into account the sign change of L from
there to here), given by (2.22). Surprising? Not if we look back at (2.26)
and note that after the exact E-step the KL divergence between q(w) and the

5In some cases the posterior is a very complicated expression, and simpler variational
distributions are chosen which do not allow for F = L. In our case, the posterior is Gaussian,
allowing us to match it by choosing a Gaussian q(w).
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posterior on w is zero, and F = L. The new fact is that here µ and Σ being
fixed, it is possible to equate the derivatives to zero and obtain a closed form
solution. This gives the update rules:

αnew
j =

1

µ2
j + Σjj

, (σ2)new =
‖t−Φµ‖2 + Tr[ΦTΦ Σ]

N
, (2.30)

which are the same irrespective of whether derivatives were taken in a logarith-
mic scale or not. The update rule for the noise variance can be expressed in a
different way:

(σ2)new =
‖y −Φµ‖2 + (σ2)old

∑
j γj

N
, (2.31)

by introducing the quantities γj ≡ 1 − αjΣjj , which are a measure of how
“well-determined” each weight ωj is by the data (MacKay, 1992).

The EM algorithm for the RVM is guaranteed to increase L at each step, since
the E-step sets F = L, and the M-step increases F . Tipping (2001, App. A) pro-
poses an alternative update rule for the M-step, that does not locally maximise
F . However, this update rule gives faster convergence than the optimal one.6

The modified M-step, derived by Tipping (2001), is obtained by an alternative
choice of independent terms in the derivatives, as is done by MacKay (1992):

αnew
j =

γj
µ2
j

, (σ2)new =
‖y −Φµ‖2
N −∑j γj

. (2.32)

2.2.2 Why Do Sparse Solutions Arise?

Faul and Tipping (2002) and Wipf et al. (2004) have recently proposed two quite
different ways of understanding why the RVM formulation leads to sparse solu-
tions. The first study the location of the maxima of the log marginal likelihood,
while the second show that the α’s are variational parameters of an approxima-
tion to a heavy tailed prior on w; this variational approximation favours sparse
solutions.

Faul and Tipping (2002) show that as a function of a single αi, given the other
α’s, the marginal likelihood has a unique maximum which can be computed
in closed-form. The optimal value of αi can either be +∞ or a finite value.
They also show that the point where all individual log evidences conditioned
on one single αi are maximised is a joint maximum over α, since the Hessian

6Coordinate ascent algorithms, such as the EM, are sometimes very slow, and incomplete
steps make them sometimes faster.
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of L is negative semi-definite. Sparse solutions arise then from the fact that
L has local maxima where some of the α’s are genuinely infinity. There is an
unsatisfactory ambiguity, however, at this point. The reason why learning α
is based on maximising the log evidence (MLII learning) stems from the fact
that we are finding the MAP estimate of α under a uniform prior over α. Yet
MAP solutions are variant under a change of parameterisation. To see this, let
us consider the noise known and write the posterior on α:

p(α|y, X) ∝ p(y|X,α) pα(α) , (2.33)

where pα(α) is the prior on α. Consider now a change of variable by means of
an invertible function g(·). The posterior on g(α) is given by:7

p (g(α)|y, X) ∝ p (y|X, g(α)) pg(α) (g(α)) ,

∝ p (y|X, g(α))
1

g′(α)
pα(α) ,

(2.34)

and we can see that in general [g(α)]MAP 6= g(αMAP).8 More specifically, for
flat priors, the MAP solution depends on the scale on which the prior is defined.
For example, we have previously noted that it is convenient to maximise the
prior over logα,9 since this allows to use unconstrained optimisation. To still
have that MAP is equivalent to maximum evidence we need to redefine the prior
on α, so that it is uniform in the logarithmic scale. To exemplify this we give in
Table 2.1 the expression of the log posterior on α and on logα for priors flat in
both scales. Maximising the posterior is equivalent to maximising the evidence
only if the prior is flat in the scale in which the maximisation is performed.
Flat priors are therefore not uninformative for MAP estimation. For the RVM,
sparse solutions arise only when maximising the posterior over logα, with a
prior flat in logα (which corresponds in the linear scale to an improper prior
that concentrates an infinite amount of mass on sparse solutions).

Wipf et al. (2004) propose a different interpretation of the sparsity mechanism,
that has the advantage of not suffering from the MAP ambiguity. The marginal
(or “true”, indistinctly) prior on w is considered, which is obtained by marginal-
ising the Gaussian conditional prior p(w|α) over α:

pw(w) =

∫
p(w|α) p(α) dα , (2.35)

which is invariant to changes of representation of α. Of course the motivation
for using the conditional prior p(w|α) in the RVM setting was that it allowed

7Given p � ( � ), the prior on g( � ) is given by pg( � ) (g( � )) = p � ( � )/g′( � ).
8This is not surprising, since in general the maximum of a distribution is variant under a

change of variable.
9log � is a vector obtained by applying the logarithm element-wise to vector � .
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prior defined as
optimise wrt. p(α) uniform p(logα) uniform

α log p(y|X,α) log p(y|X,α) + logα
logα log p(y|X, logα)− logα log p(y|X, logα)

Table 2.1: Expression of the log posterior (ignoring constants) as a function of
α and of logα, with flat priors on α and on logα. The MAP solution depends
on changes of variable.

analytic computation of the predictive distribution. For his specific choice of in-
dependent Gamma distribution on the α’s, Tipping (2001, Sect. 5.1) shows that
pw(w) =

∏
i pwi(wi) is a product of Student-t distributions, which gives a pos-

terior over w that does not allow analytic integration. One option would be to
again consider a MAP approach;10 Tipping (2001, Sect. 5.1) argues that pw(w)
being strongly multi-modal, none of the MAP solutions is representative enough
of the distribution of the (marginal) posterior probability mass. An alternative
approximate inference strategy is proposed by Wipf et al. (2004), consisting
in using a variational approximation to the analytically conflictive true prior.
Using dual representations of convex functions, they obtain variational lower
bounds on the priors on the individual weights p̃w(w|v) =

∏
i p̃wi(wi|vi), where

v = [vi, . . . , vM ] are the variational parameters. For the special case of uniform
priors over the α’s,11 the variational bounds happen to be Gaussian distribu-
tions with zero mean and variance vi: p̃wi(wi) ∼ N (0, vi). To learn v, Wipf
et al. (2004) propose to minimise the “sum of the misaligned mass”:

{vi} = arg min
v

∫ ∣∣p(y|X,w, σ2) pw(w) − p(y|X,w, σ2) p̃w(w)
∣∣ dw ,

= arg max
v

∫
p(y|X,w, σ2) p̃w(w|v) ,

= arg max
v

p(y|X,v, σ2) ,

(2.36)

which is equivalent to maximising the log evidence. We quickly realize that
with vi = α−1

i this inference strategy is strictly identical to the standard RVM
formulation. The difference is that the conditional priors on the weights are
now the fruit of a variational approximation to the true prior on w. For a
uniform distribution over the log variance of the conditional prior, the marginal
prior is given by pwi(wi) ∝ 1/|wi|. Tipping (2001, Sect. 5.1) notes that this
prior is analogous to the ’L1’ regulariser

∑
i |wi| and that it is reminiscent of

Laplace priors p(wi) ∝ exp(−|wi|), which have been utilised to obtain sparseness

10MacKay (1999) performs a comparison between integrating out parameters and optimising
hyperparameters (MLII or ’evidence’) and integrating over hyperparameters and maximising
the ’true’ posterior over parameters.

11A Gamma distribution p(α) ∝ αa−1 exp(−b α) tends to a uniform when a, b→ 0.
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both in Bayesian and non-Bayesian contexts. Yet this is not enough for us to
understand why the variational approximation proposed by Wipf et al. (2004)
should lead to sparse solutions, and we must resort to their intuitive explanation
that we reproduce in Fig. 2.4. We plot one level curve in a 2-dimensional
example. The variational approximations are Gaussians confined within the
marginal prior on the weights. We can see that if one of the two variational
distributions had to be chosen, it would be the one for which v1 is smaller, since it
concentrates more of its mass on the likelihood. Sparsity will arise if v is learned:
indeed v1 will be shrunk to zero, allowing to concentrate a maximum amount
of variational mass on the likelihood, which results in pruning w1. At this point
it can also intuitively be understood why sparsity only arises if the marginal
prior is pwi(wi) ∝ 1/|wi|, corresponding to a flat prior over the log variance of
the conditional prior. If this was not the case, the spines of the marginal prior
would be finite, and this would not allow the variational distributions to place
infinite mass on any region, i.e. no vi could be shrunk to zero. It is interesting to
note that pwi(wi) ∝ 1/|wi| is an improper prior that cannot be accepted under
a proper Bayesian treatment. Its use despite this fact would imply a rather
unusual prior assumption about the model: that all weights should be zero.

Whether one considers the MAP approach with flat priors or the variational
approximation to the true prior on the weights, it is the approximation made
to a particular prior that enforces sparseness. Under a full Bayesian treatment,
which given the impossibility of analytical integration should be accomplished
via MCMC, it is difficult to see how sparseness could arise. Indeed, when inte-
grating over the true weights posterior we do average over different sparse config-
urations, corresponding to different modes of the posterior. Inference, it seems,
needs to be decoupled from model representation: only for the second does it
seem possible to achieve sparseness, conditioned on making approximations. It
is in any case incorrect in the strict sense to consider “Sparse Bayesian” mod-
els, and one should probably rather speak of “Sparse Approximate Bayesian”
models.

2.3 Example: Time Series Prediction with Adap-
tive Basis Functions

In (Quiñonero-Candela and Hansen, 2002) we used the RVM for time series
prediction. We chose a hard prediction problem, the MacKey-Glass chaotic
time series, which is well-known for its strong non-linearity. Optimised non-
linear models can have a prediction error which is three orders of magnitude
lower than an optimised linear model (Svarer et al., 1993). The Mackey-Glass
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Figure 2.4: Contour plots to understand sparsity. The dashed lines depict the
true prior pw(w) ∝ 1/(|w1| · |w2|). The gray filled Gaussian contour represents
the likelihood p(y|X,w, σ2). The two empty Gaussian contours represent two
candidate variational approximations to the posterior p̃w(w) ∼ N (0, diag(v)):
the vertically more elongated one will be chosen, since it concentrates more mass
on areas of high likelihood. If v is learned, v1 will be shrunk to zero to maximise
the variational mass on the likelihood. This will prune w1: sparsity arises.

attractor is a non-linear chaotic system described by the following equation:

dz(t)

dt
= −bz(t) + a

z(t− τ)

1 + z(t− τ)10
(2.37)

where the constants are set to a = 0.2, b = 0.1 and τ = 17. The series is re-
sampled with period 1 according to standard practice. The inputs are formed
by L = 16 samples spaced 6 periods from each other xk = [z(k − 6), z(k −
12), . . . , z(k − 6L)] and the targets are chosen to be yk = z(k) to perform six
steps ahead prediction (Svarer et al., 1993, as in). The fact that this dataset
has virtually no output noise, combined with its chaotic nature prevents sparsity
from arising in a trivial way: there is never too much training data. Fig. 2.5
(left) shows 500 samples of the chaotic time series on which we train an RVM.
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Figure 2.5: Sparse RVM model: 34 RVs are selected out of 500 basis functions.
Left : targets yk = z(k) corresponding to the selected RVs. (Left): location
of the RVs in the 2-dimensional space span by the two first components of x,
[z(k − 6), z(k − 12)].

Only 34 RVs are retained: the targets corresponding to the RVs are shown on
the left pane, and the inputs corresponding to the RVs are shown on the right
pane, in a reduced 2-dimensional input space where x = [z(k−6), z(k−12)]. In
this example we have used an RVM with squared exponential basis functions,
and this time we have also learned the lengthscales, one for each input dimension
individually. The test mean square error of the resulting model was 3 × 10−4

on a test set with 6000 elements.

The RVM can have very good performance on the Mackey-Glass time series,
compared to other methods. Yet this performance depends heavily on the choice
of the lengthscales of the basis functions. We show this effect for isotropic basis
functions in Fig. 2.6, reproduced from (Quiñonero-Candela and Hansen, 2002).
We train on 10 disjoint sets of 700 elements and test on sets of 8500 elements.
On the one hand we train an RVM with fixed lengthscale of value equal to the
initial value given in the figure. On the other hand we train an RVM and adapt
the lengthscale from an initial value given in the horizontal axis. We present
the test mean square error for both models and for each initial value of the
lengthscale. It can be seen that the performance dramatically depends on the
lengthscale. On the other hand, the experiment shows that it is possible to
learn it from a wide range of initial values. In (Quiñonero-Candela and Hansen,
2002) we also observed that the number of RVs retained is smaller, the larger
the lengthscale (in Fig. 2.2 we observed that for fixed lengthscales, the number
of RVs is smaller the larger the estimated output noise).



2.3 Example: Time Series Prediction with Adaptive Basis Functions 25

10
0

10
1

10
−4

10
−3

10
−2

10
−1

initial lenghtscale

m
ea

n 
sq

ua
re

 e
rr

or

Figure 2.6: Test mean square error on with and without adapting the variance
of the basis functions for an RVM with squared exponential basis functions.
Averages over 10 repetitions are shown, training on 500 and testing on 6000
samples of the Mackey-Glass time-series. The horizontal axis shows the value
to which the lengthscale is initialised: the triangles show the test mean square
error achieved by adapting the lengthscales, and the circles correspond to the
errors achieved with the fixed initial values of the lengthscales.

2.3.1 Adapting the Basis Functions

In (Quiñonero-Candela and Hansen, 2002) we learned the lengthscale of the
isotropic basis functions by maximising the log evidence. We used a simple di-
rect search algorithm (Hooke and Jeeves, 1961) at the M-step of the modified
EM algorithm (2.32). Direct search was possible on this simple 1-dimensional
problem, but one may be interested in the general case where one lengthscale
is assigned to each input dimension; this would in general be a too high dimen-
sional problem to be solved by direct search. Tipping (2001, App. C) derives
the derivatives of the log evidence wrt. to general parameters of the basis func-
tions. For the particular case of squared exponential basis functions, of the form
given by (2.6), it is convenient to optimise with respect to the logarithm of the
lengthscales:

∂L
∂ log θd

= −
N∑

i=1

M∑

j=1

Dij φj(xi) (Xid −Xjd)
2 . (2.38)
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method train error test error
Simple Linear Model 9.7× 10−2 9.6× 10−2

5NN Linear Model 4.8× 10−7 8.4× 10−5

Pruned MLP 3.1× 10−5 3.4× 10−5

RVM Isotropic 2.3× 10−6 5.5× 10−6

RVM Non-Isotropic 1.1× 10−6 1.9× 10−6

Table 2.2: Training and test mean square prediction error for the Mackey-Glass
chaotic time series. Averages over 10 repetitions, 1000 training, 8500 test cases.
Models compared (top to bottom): simple linear model on the inputs, 5 nearest
neighbours local linear model on the inputs, pruned multilayer perceptron, RVM
with adaptive isotropic squared exponential basis functions, and the same with
individual lengthscales for each input dimension.

where D =
[
(y −Φµ)µ> −ΦΣ

]
. The cost of computing these derivatives is

O(NM2 + NMD), while the cost of computing the log evidence is O(NM 2),
since Φ varies with θd, and Φ>Φ needs to be recomputed. Roughly, for the
isotropic case, as long as direct search needs less than twice as many function
evaluations as gradient descent, it is computationally cheaper.

For completeness, we extend here the experiments we performed in (Quiñonero-
Candela and Hansen, 2002) to the case of non-isotropic squared exponential
basis functions. The results are given in Table 2.2. In those experiments, we
compared an RVM with adaptive isotropic, lengthscales with a simple linear
model, with a 5 nearest-neighbours local linear model and with the pruned
neural network used in Svarer et al. (1993) for 6 steps ahead prediction. The
training set contains 1000 examples, and the test set 8500 examples. Average
values of 10 repetitions are presented. The RVM uses an average of 108 RVs
in the isotropic case, and an average of 87 for the non-isotropic case. It is
remarkable that the Adaptive RVM so clearly outperforms an MLP that was
carefully optimised by Svarer et al. (1993) for this problem. It is also remarkable
that much improvement can be gained by individually learning the lengthscales
for each dimension. Compared to the isotropic case, sparser models are obtained,
which perform better!

Unfortunately, the success of optimising the lengthscales critically depends on
the way the optimisation is performed. Specifically, a gradient descent algo-
rithm is for example used at the M-step to update the values of the lengthscales
by maximising the log evidence. The ratio between the amount of effort put
into optimising α and σ2 and the amount of effort put into optimising the θd’s
critically determines the solution obtained. Tipping (2001, App. C) mentions
that “the exact quality of results is somewhat dependent of the ratio of the
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number of α to η updates” (he refers to η as the inverse squared lengthscales).
We have for example encountered the situation in which optimising the length-
scales too heavily in the initial stages, where all α’s are small, leads to getting
stuck with too small lengthscales that lead to over-fitting. Joint optimisation
of the lengthscales does not seem a trivial task, and careful tuning is required
to obtain satisfactory results. For the concrete case of the Mackey-Glass time-
series predictions with individual lengthscales, we have found that performing
a partial conjugate gradient ascent (with only 2 line searches) at each M-step
gives good results.

2.4 Incremental Training of RVMs

Until now the computational cost of training an RVM has not been addressed in
this chapter. Yet this is an important limiting factor for its use on large training
datasets. The computational cost is marked by the need of inverting Σ, at a cost
of O(M3), and by the computation of Φ>Φ, at a cost of O(NM2).12 Initially,
before any of the α’s grows to infinity, we have that M = N (or M = N + 1, if
a bias basis function is added). This implies a computational cost cubic in the
number of training examples, which makes training on datasets with more than
a couple thousand examples impractical. The memory requirements are O(N 2)
and can also be limiting.

Inspired by the observation of Tipping (2001, App. B.2) that the RVM could be
trained in a “constructive” manner, in (Quiñonero-Candela and Winther, 2003)
we proposed the Subspace EM (SSEM) algorithm, an incremental version of
the EM (or of the faster approximate EM) algorithm used for training RVMs
presented in Sect. 2.2.1. The idea is to perform the E and M-steps only in a
subset of the weight space, the active set. This active set is iteratively grown,
starting from the empty set. Specifically, at iteration n the active setRn contains
the indices of the α’s who are allowed to be finite. As opposed to the standard
way of training RVMs, the active set is initially empty, corresponding to a fully
pruned model. The model is grown by iteratively including in the active set
the index of some weight, selected at random from the indices of the α’s set
to infinity. After each new inclusion, the standard EM for the RVM is run
on the active set only, and some α’s with index in the active set may be set
to infinity again (and become again candidates for inclusion). This procedure
is equivalent to iteratively presenting a new basis function to the model, and
letting it readjust its parameters to decide whether it incorporates the new basis
function and whether it prunes some older basis function in the light of the newly

12For fixed basis functions, i.e. if the lengthscales are not learned, Φ>Φ can be precomputed
at the start, eliminating this cost at each iteration.
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1. Set αj = L for all j. (L is effectively infinity) Set n = 1
2. Update the set of active indexes Rn
3. Perform an E-step in subspace ωj such that j ∈ Rn
4. Perform the M-step for all αj such that j ∈ Rn
5. If all basis functions have been visited, end, else go to 2.

Figure 2.7: Schematics of the SSEM algorithm.

acquired basis function. Given the active set at step n−1, the active set at step
n is given by:

Rn = {i | i ∈ Rn−1 ∧ αi ≤ +∞} ∪ {n} , (2.39)

where of course +∞ is in practice a very large finite number L arbitrarily defined.
Observe that Rn contains at most one more element (index) than Rn−1. If some
of the α’s indexed by Rn−1 happen to reach L at the n-th step, Rn can contain
less elements than Rn−1. This implies that Rn contains at most n elements, and
typically less because of pruning. In Fig. 2.7 we give a schematic description of
the SSEM algorithm.

At step n, we want to maximise the marginal likelihood with respect to the
noise and to the αj such that j ∈ Rn, while the remaining are treated as
constants with infinite value. The E-step corresponds to computing the mean
and the covariance of a reduced posterior on the weights with index in Rn. The
expressions (2.19) and (2.18) can directly be used, where Φ now has one row for
each index in Rn, and A is the diagonal matrix with elements αj with j ∈ Rn.
The M-step corresponds to re-estimating the α’s in the active set by plugging
the estimate of the reduced posterior in (2.30) if the exact EM is used, or in
(2.32) if the faster, approximate EM is used instead. At the n-th iteration,
the computational complexity of the SSEM algorithm is bounded from above
by O(n3). In practice we have observed that this complexity is smaller, since
at iteration n the size of the active set is significantly smaller than n due to
pruning.

It must be noted that since the initial value of αj is infinity for all j, the E-
step yields always an equality between the log marginal likelihood and its lower
bound. At any step n, the posterior can be exactly projected on to the space
spanned by the weights wj with j ∈ Rn. Hence, if used with the exact M-step,
the SSEM never decreases the log evidence. A subtlety needs to be addressed,
relative to the exact manner in which the SSEM algorithm is used. After the
update of the active set, one must decide how many EM iterations to perform
before updating the active set again. The one extreme is to perform only one
EM update, which is what we did in (Quiñonero-Candela and Winther (2003)).
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The other extreme is to perform a “full” EM until some convergence criterion
is satisfied. An additional consideration is that a straightforward modification
of the SSEM algorithm is to include more than one index to the active set at
each iteration. We are then left with two degrees of freedom: the number of EM
cycles between updates of the active set, and the amount by which the active
set is increased when updated. This flexibility can be used to set a limit to
the maximum number of elements in the active set. This number can be kept
constant, by incrementing the active set by the number of weights pruned at
each EM iteration. In this way one can choose the amount of computational
effort that one wants to put into the learning process. In Fig. 2.8 we show the
evolution of the negative log likelihood and the number of RVs for an incremental
RVM where the size of the active set is fixed to 500 (SSEM-fixed-500) and for an
incremental RVM where the active set is incremented with 59 elements13 every
10 EM cycles (SSEM-10-59). The two are compared to the standard RVM on
an 8-dimensional training set with 4000 training examples, the KIN40K dataset,
that we describe in Sect. 2.6. The stopping criterion is based on the relative
change of the negative log likelihood; when it is met, an additional 100 EM
cycles are performed with no new inclusions in the active set. SSEM-fixed-500
achieves a better negative log evidence, and also a slightly better test error
(0.037 versus 0.039, although this might not be significant) than SSEM-59. The
final number of RVs selected is similar for the three methods, 340 for the RVM,
372 for SSEM-59 and 390 for SSEM-fixed-500. A significant computational
speedup is gained by using the SSEM algorithm, already for a training set of
4000 examples. For small enough training sets, it is preferable to directly use
standard RVM, which faster than SSEM. Conversely, the larger the training set,
the greater the speedup offered by SSEM. SSEM also allows to train on very
large training sets (sizes of 10000 or more) where the standard RVM cannot be
used at all (on the computers within our reach).

Tipping and Faul (2003) have recently proposed an alternative incremental ap-
proach to training the RVM that takes advantage of the analysis performed by
Faul and Tipping (2002), where the maximum of the log evidence wrt. to a
single α can be computed in closed-form. The “fast marginal likelihood max-
imisation” they propose selects the next basis function to include in the active
set under an optimality criterion, which one would expect to be better than
random selection. However, this active selection process comes at an additional
computational cost. It will be interesting to perform an exhaustive practical
comparison between the two methods, to learn whether the method proposed
by Tipping and Faul (2003) is superior on all fronts, or whether for applica-
tions where minimal computational complexity is required our method offers
sufficiently good performance. It will also be interesting to investigate the com-

13“Magic” number used by Smola and Bartlett (2001), that gives a 0.95 probability of
including one among the 0.05 best basis functions.
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Figure 2.8: Negative log evidence (left) and number of RVs (right) versus train-
ing time (in seconds). The dashed line corresponds to a standard RVM, the gray
dash-dotted line to the SSEM training with fixed active set size of 5000, and
the black solid line to the SSEM training with increments of 59 basis functions
every 10 EM cycles. The dataset is 8-dimensional and contains 4000 training
examples.

parative performance of an alternative efficient approach to training RVMS,
based on Bayesian “backfitting” rather than on an incremental scheme, that
was very recently proposed by D’Souza et al. (2004).

2.5 Improving the Predictive Variances: RVM*

Probabilistic models are interesting because instead of point predictions they
provide with predictive distributions. The extended linear models with Gaus-
sian priors on the weights we have considered in this chapter are probabilistic
models, that have simple Gaussian predictive distributions with mean and vari-
ance given by (2.10). For the RVM, this is also the case since the true priors on
the weights are approximated by Gaussian priors conditioned on the α’s. For
localised basis functions such as the squared exponential given by (2.6), if a test
input x∗ lies far away from the centres of all relevance vectors, the response of
the basis functions φj(x∗) becomes small: the predictive mean goes to zero and
the predictive variance reduces to the noise level. Under the prior, functions
randomly generated from (2.1) will not have much signal far away from the cen-
tres of the relevance vectors. In other words, the model uncertainty is maximal
in the neighbourhood of the centres of the relevance vectors, and goes to zero
as one moves far away from them. For the posterior, this effect is illustrated
in Fig. 2.9, and can be further understood by analysing the expression of the
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Figure 2.9: Behaviour of the predictive distributions. Bottom (with left y-axis):
the white crosses represent the training data, the circled ones being the cases
whose input is the center of the relevance vectors obtained from training. The
black region is the 95% confidence interval for the predictions of a standard
RVM, and the gray region that for the RVM* (for the latter, the white line is
the mean prediction). Top (with right y-axis): The solid line represents the
predictive standard deviation of the RVM, and the dot-slashed one that of the
RVM*. Note that the predictive variance decreases when moving away from the
relevance vectors in the RVM, but increases for the RVM*.

predictive variance, (2.10).

As a probabilistic model, the RVM with localised basis functions thus produces
inappropriate estimates of the predictive uncertainty, with a behaviour opposite
to what would seem desirable.
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2.5.1 RVM*

Consider having trained an RVM and facing the task of predicting at a new
unseen test point. To solve the problem, that there might be no possibility of
variation for inputs far from the centres of the relevance vectors, we propose
the introduction of an additional basis function centred at the test point. The
training stage remains unchanged, the new basis function being introduced only
at test time and for a specific test input. This is the idea behind the modification
of the RVM that we propose: the RVM*.

For each test point x∗, we modify the model obtained from training by introduc-
ing one new basis function centred on x∗, and its associated weight with prior
distribution p(w∗) ∼ N (0, α−1

∗ ) (we postpone a little the issue of how to set α∗).
The joint augmented posterior distribution of the weights has now covariance
and mean given by:

Σ∗ =

[
Σ−1 σ−2Φ> φ∗

σ−2φ>∗ Φ α∗ + σ−2φ>∗ φ∗

]−1

, µ∗ = σ−2Σ∗

[
Φ>

φ>∗

]
y .

(2.40)

Σ and µ are the covariance and the mean of the posterior distribution of the
weights obtained from training, (2.18) and (2.19), and φ∗ is the newly introduced
basis function evaluated at all training inputs.

The predictive distribution of the augmented model at x∗ has mean and variance
given by:

m∗(x∗) = m(x∗) +
e∗ q∗
α∗ + s∗

, v∗(x∗) = v(x∗) +
e2
∗

α∗ + s∗
, (2.41)

where

q∗ = φ>∗ (y −Φµ)/σ2 , s∗ = φ>∗ (σ2I + ΦA−1Φ>)−1φ∗ ,

e∗ = 1− σ−2φ(x∗)Σ Φ>φ∗ .

We have adopted the notation of Faul and Tipping (2002): q∗ is a ‘quality’
factor, that indicates how much the training error can be reduced by making
use of the new basis function. s∗ is a ‘sparsity’ factor that indicates how much
the new basis function is redundant for predicting the training data given the
existing relevance vectors. e∗ is an ‘error’ term, that indicates how much worse
the existing model is than the new basis function at predicting at the new input
x∗. Note, that the predictive variance of RVM* in eq. (2.41) is guaranteed not
to be smaller than for the RVM. Note also, that the predictive mean of the
RVM* is modified as a result of the additional modelling flexibility, given by
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the new basis function. This new basis function is weighted according to how
much it helps model the part of the training data that was not well modelled by
the classic RVM, whose sparseness may lead to under-fitting, see the discussion
section. Figure 2.9 illustrates this effect.

When introducing an additional basis function at test time, we also get an
additional weight w∗ (which is integrated out when making predictions) and an
extra prior precision parameter α∗. How do we set α∗? One näıve approach
would be to take advantage of the work on incremental training done by Faul
and Tipping (2002), where it is shown that the value of α∗ that maximizes the
marginal likelihood, given all the other α’s (in our case obtained from training)
is given by:

α∗ =
s2
∗

q2∗ − s∗
, if q2

∗ > s∗, α∗ = ∞, otherwise. (2.42)

Unfortunately, this strategy poses the risk of deletion of the new basis function
(when the new basis function doesn’t help significantly with modelling the data,
which is typically the case when when x∗ lies far from all the training inputs).
Thus the unjustifiably small error bars of RVM would persist.

In our setting learning α∗ by maximizing the evidence makes little sense, since
it contravenes the nature of our approach. We do want to impose an a priori
assumption on the variation of the function. When far away from the relevance
vectors, α−1

∗ is the a priori variance of the function value. We find it natural
to make α−1

∗ equal to the empirical variance of the observed target values,
corresponding to the prior assumption that the function may vary everywhere.

Training is identical for the RVM and for the RVM*, so it has the same compu-
tational complexity for both. For predicting, the RVM needs only to retain µ
and Σ from training, and the complexity is O(M) for computing the predictive
mean and O(M2) for the predictive variance. The RVM* needs to retain the
whole training set in addition to µ and Σ. The computational complexity is
O(MN) both for computing the predictive mean and the predictive variance.
The dependence on the full training set size N is caused by the additional weight
needing access to all targets14 for marginalized over.

14One could get rid of the dependence on N by re-fitting only using the targets associated
with the relevance vectors; this leads to too large predictive variances, since the training set
may have contained data close to the test input, which hadn’t been designated as relevance
vectors.
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Squared error loss Absolute error loss - log test density loss
RVM RVM* GP RVM RVM* GP RVM RVM* GP

Loss: 0.138 0.135 0.092 0.259 0.253 0.209 0.469 0.408 0.219

RVM · not sig. < 0.01 · 0.07 < 0.01 · < 0.01 < 0.01

RVM* · 0.02 · < 0.01 · < 0.01

GP · · ·

Table 2.3: Results for the Boston house-price experiments for RVM, RVM* and
GP. The upper sub-table indicates the average value of the losses for three loss
functions. In the lower sub-table, the values in the cells are the p-values that
indicate the significance with which the model in the corresponding column
beats the model in the corresponding row.

2.6 Experiments

We compare the classic RVM, the RVM* and a Gaussian process (GP)15 with
squared exponential covariance function on two datasets: the Boston house-
price dataset, (Harrison and Rubinfeld, 1978), with 13-dimensional inputs, and
the KIN40K (robot arm) dataset16, with 8-dimensional inputs. The KIN40K
dataset represents the forward dynamics of an 8 link all-revolute robot arm.

We use a 10 fold cross-validation setup for testing on both datasets. For Boston
house-price we use disjoint test sets of 50/51 cases, and training sets of the
remaining 455/456 cases. For the robot arm we use disjoint test and training
sets both of 2000 cases. For all models we learn individual lengthscales for each
input dimension, and optimize by maximizing the marginal likelihood, (Tipping,
2001, appendix C) and (Williams and Rasmussen, 1996). For each partition and
model we compute the squared error loss, the absolute error loss and the negative
log test density loss. In addition to the average values of the different losses, we
compute the statistical significance of the difference in performance of each pair
of models for each loss, and provide the p-value obtained from a (two-sided)
paired t-test17 on the test set averages.

The results for the Boston house-price example in table 2.3 show that the RVM*
produces significantly better predictive distributions than the classic RVM.
Whereas the losses which only depend on the predictive mean (squared and
absolute) are not statistically significantly different between RVM an RVM*,

15We give an introduction to Gaussian Processes in Sect. 3.1.
16From the DELVE archive http://www.cs.toronto.edu/delve.
17For the Boston house-price dataset, due to dependencies (overlap) between the training

sets, assumptions of independence needed for the t-test are compromised, but this is probably
of minor effect.
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Squared error loss Absolute error loss - log test density loss
RVM RVM* GP RVM RVM* GP RVM RVM* GP

Loss: 0.0043 0.0040 0.0024 0.0482 0.0467 0.0334 -1.2162 -1.3295 -1.7446

RVM · < 0.01 < 0.01 · < 0.01 < 0.01 · < 0.01 < 0.01

RVM* · < 0.01 · < 0.01 · < 0.01

GP · · ·

Table 2.4: Results for the Robot Arm data; the table is read analogously to
table 2.3.

the negative log test density loss is significantly smaller for RVM*, confirming
that the predictive uncertainties are much better. The RVM models have a final
average number of relevance vectors of 27 ± 14 (mean ± std. dev.) showing a
high degree of sparsity18 and quite some variability. The results for the Robot
arm example in table 2.4 show a similar picture. For this (larger) data set, the
difference between RVM and RVM* is statistically significant even for the losses
only depending on the mean predictions. The final numbers of relevance vectors
were 252± 11. We also compare to a non-degenerate (see section 2.6.1) Gaus-
sian process. The GP has a significantly superior performance under all losses
considered. Note also, that the difference between RVM and GPs is much larger
than that of RVM vs. RVM*. This may indicate that sparsity in regression mod-
els may come at a significant cost in accuracy. To our knowledge, RVMs and
GPs have not been compared previously experimentally in an extensive manner.

2.6.1 Discussion

The RVM is equivalent to a GP (Tipping, 2001, section 5.2) with covariance
function given by:

k(xi,xj) =

M∑

k=1

1

αk
φk(xi)φk(xj). (2.43)

This covariance function is degenerate,19 in that when M < N (which is typical
for the RVM) the distribution over (noise free) functions is singular. This limits
the range of functions that can be implemented by the model. The RVM*
introduced in this paper is a GP with an augmented covariance function:

k∗(xi,xj) = k(xi,xj) +
1

α∗
φ∗(xi)φ∗(xj), (2.44)

18Note, that the degree of sparsity obtained depends on the (squared exponential) basis
function widths; here the widths were optimized using the marginal likelihood.

19In Sect. 3.2.3 we elaborate more on degenerate GPs.
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which ensures prior variability at the test location, that survives into the pos-
terior if the data doesn’t have a strong opinion in that region.

It is interesting to note that a GP with squared exponential covariance func-
tion coincides exactly with an RVM infinitely augmented, at all points in the
input space. Following Mackay (1997), in Sect. 3.2.1 we show this for the one-
dimensional input case, where we recover the squared exponential covariance
GP as being equivalent to an infinite RVM. The infinite RVM becomes tractable
when viewed as a GP, but of course it is not clear how to treat the infinitely
many hyperparameters, or how to introduce sparsification from this standpoint.

It may be surprising that the experiments show that the performance using
loss functions which depend only on the predictive means was improved for
the RVM* (although sometimes the difference was not statistically significant).
The reason for this is that the extra added basis function, which is fit to the
training data, adds flexibility to the model. Since this extra flexibility turns
out to improve performance, this shows that the classical RVM under-fits the
data, ie. the models have become too sparse. Indeed the performance of the full
non-degenerate GP is much better still.

The RVM has become a popular tool because it represents a simple tractable
probabilistic model. As we have shown, if one is interested in the predictive
variance, the RVM should not be used. Even if one is interested only in predic-
tive means, the sparsity mechanism of the RVM seems to come at the expense
of accuracy. The proposed RVM* goes some way at fixing this problem at an
increased computational cost. Although outside the scope of this thesis, it is an
important future task to experimentally compare the computation vs. accuracy
tradeoff between different methods for sparsifying GPs. Some recent papers do
attempt to assess these tradeoffs, however, the performance measures often ne-
glect the probabilistic nature of the predictions and focus exclusively on mean
predictions. In Chap. 3 we investigate one family of sparse approximations to
GPs.



Chapter 3

Reduced Rank Gaussian
Processes

Gaussian Processes (GPs) are known for their state of the art performance in
regression and classification problems. In this chapter we restrict ourselves to
the regression case, and introduce GPs in Sect. 3.1. Relevance Vector Machines
(RVMs), that we presented in Chap. 2, are in fact particular examples of GPs. In
Sect. 3.2 we establish the more general fact that GPs are equivalent to extended
linear models when Gaussian priors are imposed over the weights, and that the
number of weights can be infinite. The linear model perspective is later used to
devise computationally effective approximations to GPs.

Indeed, GPs unfortunately suffer from high computational cost for learning and
predictions. For a training set containing N cases, the complexity of training is
O(N3), similar to that of the RVM (Sect. 2.2), and that of making a prediction
is O(N) for computing the predictive mean, and O(N 2) for computing the pre-
dictive variance (versus O(M) and O(M 2) for the RVM, with M � N). A few
computationally effective approximations to GPs have recently been proposed.
Sparsity is achieved in Csató (2002), Csató and Opper (2002), Seeger (2003),
and Lawrence et al. (2003), by minimising KL divergences between the approx-
imated and true posterior; Smola and Schölkopf (2000) and Smola and Bartlett
(2001) based on a low rank approximate posterior; Gibbs and MacKay (1997)
and Williams and Seeger (2001) using matrix approximations; Tresp (2000) by
neglecting correlations; and (Wahba et al., 1999; Poggio and Girosi, 1990) with
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subsets of regressors. The RVM (Tipping, 2001) can also be cast as a sparse lin-
ear approximation to GPs, although it was not conceived as such. Schwaighofer
and Tresp (2003) provide a very interesting yet brief comparison of some of these
approximations to GPs. They only address the quality of the approximations
in terms of the predictive mean, ignoring the predictive uncertainties, and leave
some theoretical questions unanswered, like the validity of approximating the
the maximum of the posterior.

In Sect. 3.3.1 we analyse sparse linear or equivalently reduced rank approxi-
mations to GPs that we will call Reduced Rank Gaussian Processes (RRGPs).
In a similar manner to the RVM, RRGPs correspond to inappropriate priors
over functions, resulting in inappropriate predictive variances (for example, the
predictive variance shrinks as the test points move far from the training set).
We give a solution to this problem which is analogous to the RVM* proposed
in Sect. 2.5, consisting in augmenting the finite linear model at test time. This
guarantees that the RRGP approach corresponds to an appropriate prior. Our
analysis of RRGPs should be of interest in general for better understanding the
infinite nature of Gaussian Processes and the limitations of diverse approxima-
tions (in particular of those based solely on the posterior distribution). Learning
RRGPs implies both selecting a support set, and learning the hyperparameters
of the covariance function. Doing both simultaneously proves to be difficult
in practice and questionable theoretically. Smola and Bartlett (2001) proposed
the Sparse Greedy Gaussian Process (SGGP), a method for learning the support
set for given hyperparameters of the covariance function based on approximat-
ing the posterior. We show that approximating the posterior is unsatisfactory,
since it fails to guarantee generalisation, and propose a theoretically more sound
greedy algorithm for support set selection based on maximising the marginal
likelihood. We show that the SGGP relates to our method in that approximat-
ing the posterior reduces to partially maximising the marginal likelihood. We
illustrate our analysis with an example. We propose an approach for learning
the hyperparameters of the covariance function of RRGPs for a given support
set, originally introduced by Rasmussen (2002).

In Sect. 3.4 we present experiments where we compare learning based on se-
lecting the support set to learning based on inferring the hyperparameters. We
give special importance to evaluating the quality of the different approximations
when computing predictive variances. A discussion in Sect.3.5 concludes this
chapter.
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3.1 Introduction to Gaussian Processes

In inference with parametric models prior distributions are often imposed over
the model parameters, which can be seen as a means of imposing regularity and
improving generalisation. The form of the parametric model, together with the
form of the prior distribution on the parameters result in a (often implicit) prior
assumption on the joint distribution of the function values. At prediction time
the quality of the predictive uncertainty will depend on the prior over functions.
Unfortunately, for probabilistic parametric models this prior is defined in an
indirect way, and this in many cases results in priors with undesired properties.
An example of a model with a peculiar prior over functions is the RVM, for
which the predictive variance shrinks for a query point far away from the training
inputs as discussed in Sect. 2.5. If this property of the predictive variance is
undesired, then one concludes that the prior over functions was undesirable in
the first place, and one would have been happy to be able to directly define a
prior over functions.

Gaussian Processes (GPs) are non-parametric models where a Gaussian process1

prior is directly defined over function values. The direct use of Gaussian Pro-
cesses as priors over functions was motivated by Neal (1996) as he was studying
priors over weights for artificial neural networks. A model equivalent to GPs,
kriging, has since long been used for analysis of spatial data in Geostatistics
(Cressie, 1993). In a more formal way, in a GP the function outputs f(xi) are
a collection random variables indexed by the inputs xi. Any finite subset of
outputs has a joint multivariate Gaussian distribution (for an introduction on
GPs, and thorough comparison with Neural Networks see (Rasmussen, 1996)).
Given a set of training inputs {xi|i = 1, . . . , N} ⊂ RD (organised as rows in
matrix X), the joint prior distribution of the corresponding function outputs
f = [f(x1), . . . , f(xN )]> is Gaussian p(f |X, θ) ∼ N (0,K), with zero mean (this
is a common and arbitrary choice) and covariance matrix Kij = K(xi,xj). The
GP is entirely determined by the covariance function K(xi,xj) with parameters
θ.

An example of covariance function that is very commonly used is the squared
exponential:

K(xi,xj) = θ2
D+1 exp

(
−1

2

D∑

d=1

1

θ2
d

(Xid −Xjd)
2

)
. (3.1)

θD+1 relates to the amplitude of the functions generated by the GP, and θd is

1We will use the expression “Gaussian Process” (both with capital first letter) or “GP” to
designate the non-parametric model where a Gaussian process prior is defined over function
values
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a lengthscale in the d-th dimension that allows for Automatic Relevance De-
termination (ARD) (MacKay, 1994; Neal, 1996): if some input dimensions are
un-informative about the covariance between observed training targets, their
associated θd will be made large (or effectively infinite) and the correspond-
ing input dimension will be effectively pruned from the model. We will call
the parameters of the covariance function hyperparameters, since they are the
parameters of the prior.

In general, inference requires choosing a parametric form of the covariance func-
tion, and either estimating the corresponding parameters θ (which is named by
some Maximum Likelihood II, or second level of inference) or integrating them
out (often through MCMC). We will make the common assumption of Gaussian
independent identically distributed output noise, of variance σ2. The training
outputs y = [y1, . . . , yN ]> (or targets) are thus related to the function evalu-
ated at the training inputs by a likelihood distribution2 p(y|f , σ2) ∼ N (f , σ2 I),
where I is the identity matrix. The posterior distribution over function values
is useful for making predictions. It is obtained by applying ‘Bayes’ rule:3

p(f |y, X, θ, σ2) =
p(y|f , σ2) p(f |X, θ)

p(y|X, θ, σ2)

∼ N
(
K>

(
K + σ2 I

)−1
y,K−K>

(
K + σ2 I

)−1
K
)
.

(3.2)

The mean of the posterior does not need to coincide with the training targets.
This would be the case however, if the estimated noise variance happened to be
zero, in which case the posterior at the training cases would be a delta function
centred on the targets.

Consider now that we observe a new input x∗ and would like to know the
distribution of f(x∗) (that we will write as f∗ for convenience) conditioned on
the observed data, and on a particular value of the hyperparameters and of the
output noise variance. The first thing to do is to write the augmented prior
over the function values at the training inputs and the new function value at
the new test input:

p

([
f
f∗

]∣∣∣∣x∗, X, θ
)
∼ N

(
0,

[
K k∗
k>∗ k∗∗

])
, (3.3)

where k∗ = [K(x∗,x1), . . . ,K(x∗,xN )]
>

and k∗∗ = K(x∗,x∗). Then we can
write the distribution of f∗ conditioned on the training function outputs:

p(f∗|f ,x∗, X, θ) ∼ N
(
k ∗>K−1f , k∗∗ − k ∗>K−1k∗

)
. (3.4)

2Notice that learning cannot be achieved from the likelihood alone: defining a prior over
function values is essential to learning.

3In Sect. A.2 some algebra useful for deriving (3.2) is given: notice that the likelihood
p(y|f , σ2) is also Gaussian in f with mean y.
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The predictive distribution of f∗ is obtained by integrating out the training
function values f from (3.4) over the posterior distribution (3.2). The predictive
distribution is Gaussian:

p(f∗|y,x∗, X, θ, σ2) =

∫
p(f∗|f ,x∗, X, θ) p(f |y, X, θ, σ2) df

∼ N (m(x∗), v(x∗)) ,

(3.5)

with mean and variance given by:

m(x∗) = k>∗
(
K + σ2 I

)−1
y , v(x∗) = k∗∗ − k>∗

(
K + σ2 I

)−1
k∗ . (3.6)

Another way of obtaining the predictive distribution of f∗ is to augment the
evidence with a new element y∗ corresponding to the noisy version of f∗ and to
then write the conditional distribution of y∗ given the training targets y. The
variance of the predictive distribution of y∗ is equal to that of the predictive
distribution of f∗ (3.6) plus the noise variance σ2, while the means are identical
(the noise has zero mean).

Both if one chooses to learn the hyperparameters or to be Bayesian and do
integration, the marginal likelihood of the hyperparameters (or evidence of the
observed targets)4 must be computed. In the first case this quantity will be
maximised with respect to the hyperparameters, and in the second case it will
be part of the posterior distribution from which the hyperparameters will be
sampled. The evidence is obtained by averaging the likelihood over the prior
distribution on the function values:

p(y|X, θ, σ2) =

∫
p(y|f) p(f |X, θ) df ∼ N

(
0,K + σ2 I

)
. (3.7)

Notice that the evidence only differs from the prior over function values in a
“ridge” term added to the covariance, that corresponds to the additive Gaus-
sian i.i.d. output noise. Maximum likelihood II learning involves estimating the
hyperparameters θ and the noise variance σ2 by minimising (usually for conve-
nience) the negative log evidence. Let Q ≡

(
K + σ2 I

)
. The cost function and

its derivatives are given by:

L =
1

2
log |Q|+ 1

2
y>Q−1y ,

∂L
∂θi

=
1

2
Tr

(
Q−1 ∂Q

∂θi

)
− y>Q−1 ∂Q

∂θi
Q−1y ,

∂L
∂σ2

=
1

2
Tr
(
Q−1

)
− y>Q−1Q−1y ,

(3.8)

4We will from now on use indistinctly “marginal likelihood” or “evidence” to refer to this
distribution.
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and one can use some gradient descent algorithm to minimise L (conjugate
gradient gives good results, Rasmussen, 1996).

For Gaussian processes, the computational cost of learning is marked by the
need to invert matrix Q and therefore scales with the cube of the number of
training cases (O(N3)). If Q−1 is known (obtained from the learning process),
the computational cost of making predictions is O(n) for computing the pre-
dictive mean, and O(N2) for the predictive variance for each test case. There
is a need for approximations that simplify the computational cost if Gaussian
Processes are to be used with large training datasets.

3.2 Gaussian Processes as Linear Models

Gaussian Processes correspond to parametric models with an infinite number
of parameters. Williams (1997a) showed that infinite neural networks with cer-
tain transfer functions and the appropriate priors on the weights are equivalent
to Gaussian Processes with a particular “neural network” covariance function.
Conversely, any Gaussian Process is equivalent to a parametric model, that can
be infinite.

In Sect(s). 3.2.1 and 3.2.2 we establish the equivalence between GPs and linear
models. For the common case of GPs with covariance functions that cannot
be expressed as a finite expansion, the equivalent linear models are infinite.
However, it might still be interesting to approximate such GPs by a finite lin-
ear model, which results in degenerate Gaussian Processes. In Sect. 3.2.3 we
introduce degenerate GPs and explain that they often correspond to inappro-
priate priors over functions, implying counterintuitive predictive variances. We
then show how to modify these degenerate GPs at test time to obtain more
appropriate priors over functions.

3.2.1 From Linear Models to GPs

Consider the following extended linear model, where the model outputs are
a linear combination of the response of a set of basis functions {φj(x)|j =
1, . . . ,M} ⊂ [RD → R]:

f(xi) =

M∑

j=1

φj(xi)wj = φ(xi) w , f = Φ w , (3.9)



3.2 Gaussian Processes as Linear Models 43

where as earlier f = [f(x1), . . . , f(xN )]> are the function outputs. The weights
are organised in a vector w = [w1, . . . , wM ]>, and φj(xi) is the response of the
j-th basis function to input xi. φ(xi) = [φ1(xi), . . . , φM (xi)] is a row vector
that contains the response of all M basis functions to input xi and matrix Φ
(sometimes called design matrix ) has as its i-th row vector φ(xi). Let us define
a Gaussian prior over the weights, of the form p(w|A) ∼ N (0,A). Since f is a
linear function of w it has a Gaussian distribution under the prior on w, with
mean zero. The prior distribution of f is:

p(f |A,Φ) ∼ N (0,C) , C = Φ A Φ> . (3.10)

The model we have defined corresponds to a Gaussian Process. Now, if the
number of basis functions M is smaller than the number of training points N ,
then C will not have full rank and the probability distribution of f will be an
elliptical pancake confined to an M -dimensional subspace in the N -dimensional
space where f lives (Mackay, 1997).

Let again y be the vector of observed training targets, and assume that the
output noise is additive Gaussian i.i.d. of mean zero and variance σ2. The like-
lihood of the weights is then Gaussian (in y and in w) given by p(y|w,Φ, σ2) ∼
N (Φ w, σ2 I). The prior over the training targets is then given by

p(y|A,Φ, σ2) ∼ (0, σ2 I + C) , (3.11)

and has a full rank covariance, even if C is rank deficient.

To make predictions, one option is to build the joint distribution of the training
targets and the new test function value and then condition on the targets. The
other option is to compute the posterior distribution over the weights from
the likelihood and the prior. Williams (1997b) refers to the first option as
the “function-space view” and to the second as the “weight-space view”. This
distinction has inspired us for writing the next two sections.

3.2.1.1 The Parameter Space View.

Using Bayes rule, we find that the posterior is the product of two Gaussians in
w, and is therefore a Gaussian distribution:

p(w|y,A,Φ, σ2) =
p(y|w,Φ, σ2) p(w|A)

p(y|A,Φ, σ2)
∼ N (µ,Σ) ,

µ = σ−2 Σ Φ> y , Σ =
[
σ−2 Φ>Φ + A−1

]−1
.

(3.12)

The maximum a posteriori (MAP) estimate of the model weights is given by
µ. If we rewrite this quantity as µ = [Φ>Φ + σ2 A]−1Φ>y, we can see that
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the Gaussian assumption on the prior over the weights and on the output noise
results in µ being given by a regularised version of the normal equations. For a
new test point x∗, the corresponding function value is f∗ = φ(x∗) w; for making
predictions the w’s are drawn from the posterior. Since f∗ is linear in w, it is
quite clear that the predictive distribution p(f∗|y,A,Φ, σ2) is Gaussian, with
mean and variance given by:

m(x∗) = φ(x∗)
>µ , v(x∗) = φ(x∗)

>Σφ(x∗) . (3.13)

We can rewrite the posterior covariance using the matrix inversion lemma (see
App. A.1) as Σ = A − A[σ2 I + Φ A Φ>]−1 A. This expression allows us to
rewrite the predictive mean and variance as:

m(x∗) = φ(x∗)
>A Φ>[σ2 I + Φ A Φ>]−1y ,

v(x∗) = φ(x∗)
>Aφ(x∗)− φ(x∗)

>A Φ>[σ2 I + Φ A Φ>]−1Φ Aφ(x∗) ,
(3.14)

which will be useful for relating the parameter space view to the GP view.

3.2.1.2 The Gaussian Process View.

There exists a Gaussian Process that is equivalent to our linear model with
Gaussian priors on the weights given by (3.9). The covariance function of the
equivalent GP is given by:

k(xi,xj) = φ(xi)
>Aφ(xj) =

M∑

k=1

M∑

l=1

Akl φk(xi)φl(xj) . (3.15)

The covariance matrix of the prior over training function values is given by
K = Φ A Φ> and we recover the same prior as in (3.10). Taking the same noise
model as previously, the prior over targets is identical to (3.11).

Given a new test input x∗, the vector of covariances between f∗ and the training
function values is given by k∗ = Φ Aφ(x∗) and the prior variance of f∗ is k∗∗ =
φ(x∗) Aφ(x∗). Plugging these expressions into the equations for the predictive
mean and variance of a GP (3.6) one recovers the expressions given by (3.14)
and (3.13). The predictive mean and variance of a GP with covariance function
given by (3.15) are therefore identical to the predictive mean and variance of
the linear model.

A fundamental property of the GP view of a linear model is that the set of M
basis functions appear exclusively as inner products. Linear models where M is
infinite are thus tractable under the GP view, provided that the basis functions
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and the prior over the weights are appropriately chosen. By appropriately chosen
we mean such that a generalised dot product exists in feature space, that allows
for the use of the “kernel trick”. Schölkopf and Smola (2002) provide with
extensive background on kernels and the “kernel trick”.

Let us reproduce here an example given by Mackay (1997). Consider a one-
dimensional input space, and let us use squared exponential basis functions
φc(xi) = exp(− 1

2 (xi − c)2/λ2), where c is a given centre in input space and λ is
a known lengthscale. Let us also define an isotropic prior over the weights, of
the form A = σ2

w I. We want to make M go to infinity, and assume for simplicity
uniformly spaced basis functions. To make sure that the integral converges, we
set variance of the prior over the weights to σ2

w = s/∆M , where ∆M is the
density of basis functions in the input space. The covariance function is given
by:

k(xi, xj) = s

∫ cmax

cmin

φc(xi)φc(xj) dc ,

= s

∫ cmax

cmin

exp

[
− (xi − c)2

2λ2

]
exp

[
− (xj − c)2

2λ2

]
dc .

(3.16)

Letting the limits of the integral go to infinity, we obtain the integral of the
product of two Gaussians (but for a normalisation factor), and we can use the
algebra from Sect. A.2 to obtain:

k(xi, xj) = s
√
πλ2 exp

[
− (xi − xj)2

4λ2

]
, (3.17)

which is the squared exponential covariance function that we presented in (3.1).
We now see that a GP with this particular covariance function is equivalent to
a linear model with infinitely many squared exponential basis functions.

In the following we will show that for any valid covariance function, a GP has an
equivalent linear model. The equivalent linear model will have infinitely many
weights if the GP has a covariance function that has no finite expansion.

3.2.2 From GPs to Linear Models

We have just seen how to go from any linear model, finite or infinite, to an
equivalent GP. We will now see how to go the opposite way, from an arbitrary
GP to an equivalent linear model, which will in general be infinite and will be
finite only for particular choices of the covariance function.

We start by building a linear model where all the function values considered
(training and test inputs) are equal to a linear combination of the rows of the
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corresponding covariance matrix of the GP we wish to approximate, computed
with the corresponding covariance function K(xi,xj). As in Sect. 3.1, the co-
variance function is parameterised by the hyperparameters θ. A Gaussian prior
distribution is defined on the model weights, with zero mean and covariance
equal to the inverse of the covariance matrix:

[
f
f∗

]
=

[
K k∗
k>∗ k∗∗

]
·
[

w
w∗

]
, p

([
w
w∗

]∣∣∣∣x∗, X, θ
)
∼ N

(
0,

[
K k∗
k>∗ k∗∗

]−1
)

.

(3.18)

To compute the corresponding prior over function values we need to integrate
out the weights [w, w∗]> from the left expression in (3.18) by averaging over the
prior (right expression in (3.18)):

p

([
f
f∗

]∣∣∣∣x∗, X, θ
)

=

∫
δ

([
f
f∗

]
−
[

K k∗
k>∗ k∗∗

]
·
[

w
w∗

])
p

([
w
w∗

]∣∣∣∣x∗, X, θ
)

dw

∼ N
(

0,

[
K k∗
k>∗ k∗∗

])
,

(3.19)

and we recover exactly the same prior over function values as for the Gaussian
Process, see (3.3).

Notice that for the linear model to correspond to the full GP two requirements
need to be fulfilled:

1. There must be a weight associated to each training input.

2. There must be a weight associated to each possible test input.

Since there are as many weights as input instances, we consider that there is an
infinite number of weights of which we only use as many as needed and qualify
such a linear model of infinite.

Of course, for covariance functions that have a finite expansion in terms of M
basis functions, the rank of the covariance matrix will never be greater than M
and the equivalent linear model can be readily seen to be finite, with M basis
functions. A trivial example is the case where the covariance function is built
from a finite linear model with Gaussian priors on the weights. The linear model
equivalent to a GP is only infinite if the covariance function of the GP has no
finite expansion. In that case, independently of the number of training and test
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cases considered, the covariance matrix of the prior (independently of its size)
will always have full rank.5

It becomes evident how one should deal with GPs that have an equivalent finite
linear model. If there are more training cases than basis functions, N > M , then
the finite linear model should be used. In the case where there are less training
cases than basis functions, M > N , it is computationally more interesting to
use the GP.

One strong motivation for the use of Gaussian Processes is the freedom to di-
rectly specify the covariance function. In practice, common choices of GP pri-
ors imply covariance functions that do not have a finite expansion. For large
datasets, this motivates the approximation of the equivalent infinite linear model
by a finite or sparse one. The approximated GP is called Reduced Rank GP
since its covariance matrix has a maximum rank equal to the number of weights
in the finite linear model.

We will see later in Sect. 3.3 that the finite linear approximation is built by
relaxing the requirement of a weight being associated to each training input,
resulting in training inputs with no associated weight. This relaxation should
only be done at training time. In the next section we show the importance of
maintaining the requirement of having a weight associated to each test input.

3.2.3 “Can I Skip w∗?” or Degenerate Gaussian Processes

One may think that having just “as many weights as training cases” with no
additional weight w∗ associated to each test case gives the same prior as a full
GP. It does only for the function evaluated at the training inputs, but it does
not anymore for any additional function value considered. Indeed, if we posed
f = K w with a prior over the weights given by p(w|X, θ) ∼ N (0,K−1), we
would obtain that the corresponding prior over the training function values is
p(f |X, θ, σ2) ∼ N (0,K). It is true that the linear model would be equivalent
to the GP, but only when the function values considered are in f . Without
addition of w∗, the linear model and prior over function values are respectively
given by:

[
f
f∗

]
=

[
K
k>∗

]
·w , p

([
f
f∗

]∣∣∣∣x∗, X, θ
)
∼ N

(
0,

[
K k∗
k>∗ k>∗ K−1k∗

])
.

(3.20)

5The covariance matrix can always be made rank deficient by replicating a function value
in the joint prior, but we do not see any reason to do this in practice.
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The prior over the new function values f∗ differs now from that of the full
GP. Notice that the prior variance of f∗ depends on the training inputs: for the
common choice of an RBF-type covariance function, if x∗ is far from the training
inputs, then there is a priori no signal, that is f∗ is zero without uncertainty!
Furthermore, the distribution of f∗ conditioned on the training function outputs,
which for the full GP is given by (3.4), has now become:

p(f∗|f ,x∗, X, θ) ∼ N
(
k>∗K−1f , 0

)
. (3.21)

Given f , any additional function value f∗ is not a random variable anymore,
since its conditional distribution has zero variance: f∗ is fully determined by f .

If w has a fixed finite size, the prior over functions implied by the linear model
ceases to correspond to the GP prior. The joint prior over sets of function values
is still Gaussian, which raises the question “is this still a GP?”. We choose to
call such a degenerate process a “degenerate Gaussian Process”.

In the case of localised (decaying) covariance functions, such as the squared ex-
ponential, degenerate GPs produce a predictive distribution that has maximal
variability around the training inputs, while the predictive variance fades to the
noise level as one moves away from them. We illustrate this effect on Fig. 3.1.
We plot the predictive standard deviation of a full GP and its degenerate coun-
terpart for various test points. The training set consists of 5 points: both models
have thus 5 weights associated to the training set. The full GP has an addi-
tional weight, associated to each test point one at a time. Though it might
be a reasonable prior in particular contexts, we believe that it is in general
inappropriate to have smaller predictive variance far away from the observed
data. We believe that appropriate priors are those under which the predictive
variance is reduced when the test inputs approach training inputs. In the case
of non-localised covariance functions, such as those for linear models or neural
networks, the predictive uncertainty does not decay as one moves away from the
training inputs, but rather increases. However, it is in that case much harder
to analyse the goodness of the prior over function evaluations. Would it be
reasonable to assume that the predictive uncertainty increases monotonically as
one moves away from the training inputs? Or is our assumption that it should
saturate more appropriate?

3.3 Finite Linear Approximations

As we have discussed in Sect. 3.2.1, a weight must be associated to each test case
to avoid inappropriate priors that produce inappropriate predictive errorbars.
However, the requirement of each training case having a weight associated to it
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Figure 3.1: Predictive standard deviation for a full GP (solid line) and for a
degenerate GP (slash-dotted line). The hyperparameters θi are all set to 1. The
crosses indicate the horizontal location of the 5 training inputs.

can be relaxed. For computational reasons it might be interesting to approx-
imate, at training time, a GP by a finite linear model with less weights than
training cases. The model and the prior on the weights are respectively given
by:

f = KNM wM , p(wM |X, θ) ∼ N (0,K−1
MM ) , (3.22)

The subscripts M and N are used to indicate the dimensions: wM is of size
M × 1 and KNM of size N ×M ; in the following we will omit these subscripts
where unnecessary or cumbersome. Sparseness arises when M < N : the induced
prior over training function values is p(f |X, θ) ∼ N

(
0,KNM K−1

MM K>NM
)
, and

the rank of the covariance matrix is at most M . We call such an approximation
a Reduced Rank Gaussian Process (RRGP).

The M inputs associated to the weights in wM do not need to correspond to
training inputs. They can indeed be any set of arbitrary points in input space.
We will call such points support inputs (in recognition to the large amount of
work on sparse models done by the Support Vector Machines community). In
this paper we will adopt the common restriction of selecting the support set
from the training inputs. We discuss ways of selecting the support points in
Sect. 3.3.4.

Learning an RRGP consists both in learning the hyperparameters of the covari-
ance function and in selecting the support set. In practice however, it is hard
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to do both simultaneously. Besides the technical difficulties of the optimisation
process (observed for example by Csató (2002)), there is the fundamental issue
of having an excessive amount of flexibility that may lead to over-fitting (ob-
served for example by Rasmussen (2002) and Seeger et al. (2003)). Smola and
Bartlett (2001) address the issue of selecting the support set (Sect. 3.3.5), as-
suming that the covariance hyperparameters are given. However, we show that
they do this in a way that does not guarantee generalisation and we propose an
alternative theoretically more sound approach in Sect. 3.3.4. In the next section
we show how to learn the hyperparameters of the covariance function for the
RRGP for a fixed support set. We also show how to make predictions under a
degenerate GP, that is, without an additional weight for the new test case, and
with the inclusion of a new weight that ensures appropriate predictive variances.

3.3.1 Learning a Reduced Rank Gaussian Process

The likelihood of the weights is Gaussian in y and is a linear combination of
wM , given by p(y|X, θ,wM , σ

2) ∼ N (KNM wM , σ
2 I), where σ2 is again the

white noise variance. The marginal likelihood of the hyperparameters of the full
GP is given by (3.7). For the sparse finite linear approximation, the marginal
likelihood is obtained by averaging the weights out of the likelihood over their
prior:

p(y|X, θ, σ2) =

∫
p(y|X, θ,wM , σ

2) p(wM |X, θ) dwM

∼ N
(
0, σ2 I + KNM K−1

MMK>NM
)
.

(3.23)

As expected, for the case where the support set comprises all training inputs
and M = N , we recover the full Gaussian Process.

Let us define Q̃ ≡
[
σ2 I + KNM K−1

MMK>NM
]
, the covariance of the RRGP ev-

idence. Maximum likelihood learning of the hyperparameters can be achieved
by minimising the negative log evidence. The cost function and its derivatives
are given by (3.8) where Q is replaced by Q̃. Since the simple linear algebra
involved can be tedious, we give here the explicit expression of the different
terms. For the terms involving log |Q̃| we have:

log |Q̃| = (N −M) log(σ2) + log
∣∣K>NM KNM + σ2 KMM

∣∣ ,
∂ log |Q̃|
∂θi

= Tr

[
Q̃−1 ∂Q̃

∂θi

]
= 2 Tr

[
∂KNM

∂θi
Z>
]
− Tr

[
K−1
MM K>NM Z

∂KNM

∂θi

]
,

∂ log |Q̃|
∂σ2

=
n−M
σ2

+ Tr [ZMM ] ,
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(3.24)

where we have introduced Z ≡ KNM

[
K>NM KNM + σ2 KMM

]−1
. For the

terms involving Q̃−1 we have:

y>Q̃−1y =
(
y>y − y> ZK>NMy

)
/σ2 ,

∂y>Q̃−1y

∂θi
= y>Z

∂KMM

∂θi
Z>y − 2 y>

(
I− ZK>NM

) ∂KNM

∂θi
Z> y/σ2 ,

∂y>Q̃−1y

∂σ2
= −y>y/σ4 + y> ZK>NMy/σ4 + y>ZKMM Z>y/σ2 .

(3.25)

The hyperparameters and the output noise variance can be learnt by using the
expressions we have given for the negative log marginal likelihood and its deriva-
tives in conjunction with some gradient descent algorithm. The computational
complexity of evaluating the evidence and its derivatives is O(NM 2 +NDM),
which is to be compared with the corresponding cost of O(N 3) for the full GP
model.

3.3.2 Making Predictions without w∗

The posterior over the weights associated to the training function values is
p(wM |y,KNM , σ

2) ∼ N (µ,Σ) with:

µ = σ−2Σ K>NMy , Σ =
[
σ−2K>NMKNM + KMM

]−1
. (3.26)

At this point one can choose to make predictions right now, based on the pos-
terior of wM and without adding an additional weight w∗ associated to the new
test point x∗. As discussed in Sect. 3.2.3, this would correspond to a degenerate
GP, leading to inappropriate predictive variance. The predictive mean on the
other hand can still be a reasonable approximation to that of the GP: Smola
and Bartlett (2001) approximate the predictive mean exactly in this way. The
expressions for the predictive mean and variance, when not including w∗, are
respectively given by:

m(x∗) = k(x∗)
>µ, v(x∗) = σ2 + k(x∗)

>Σ k(x∗). (3.27)

k(x∗) denotes the m× 1 vector [K(x∗,x1), . . . ,K(x∗,xM )]> of covariances be-
tween x∗ and at the M support inputs (as opposed to k∗ which is the N × 1
vector of covariances between x∗ and at the N training inputs). Note that if no
sparseness is enforced, (M = N), then µ = (KNN +σ2 I)−1y and the predictive



52 Reduced Rank Gaussian Processes

mean m(x∗) becomes identical to that of the full GP. Also, note that for decay-
ing covariance functions,6 if x∗ is far away from the selected training inputs, the
predictive variance collapses to the output noise level, which we have defined as
an inappropriate prior.

The computational cost of predicting without w∗ is an initial O(NM2) to com-
pute Σ, and then an additional O(M) for the predictive mean and O(M 2) for
the predictive variance per test case.

3.3.3 Making Predictions with w∗

To obtain a better approximation to the full GP, especially in terms of the
predictive variance, we add an extra weight w∗ to the model for each test input
x∗. Unless we are interested in the predictive covariance for a set of test inputs,
it is enough to add one single w∗ at a time. The total number of weights is
therefore only augmented by one for any test case.

For a new test point, the mean and covariance matrix of the new posterior over
the augmented weights vector are given by:

µ∗ = σ−2Σ∗

[
K>NM
k>∗

]
y ,

Σ∗ =

[
Σ−1 k(x∗) + σ−2 K>NMk∗

k(x∗)> + σ−2 k>∗KNM k∗∗ + σ−2 k>∗ k∗

]−1

.

(3.28)

and the computational cost of updating the posterior and computing the pre-
dictive mean and variance is O(NM) for each test point. The most expensive
operation is computing K>NMk∗ with O(NM) operations. Once this is done and
given that we have previously computed Σ, computing Σ∗ can be efficiently done
using inversion by partitioning in O(M 2) (see Sect. A.1 for the details). The
predictive mean and variance can be computed by plugging the updated poste-
rior parameters (3.28) into (3.27), or alternatively by building the updated joint
prior over the training and new test function values. We describe in detail the
algebra involved in the second option in App. A.5. The predictive mean and
variance when including w∗ are respectively given by:

m∗(x∗) = k>∗
[
KNM K−1

MM K>NM + σ2 I + v∗v
>
∗ /c∗

]−1
y ,

v∗(x∗) = σ2 + k∗∗ + k>∗
[
KNM K−1

MM K>NM + σ2 I + v∗v
>
∗ /c∗

]−1
k∗ .

(3.29)

6Covariance functions whose value decays with the distance between the two arguments.
One example is the squared exponential covariance function described in Sect. 3.1. Decaying
covariance functions are very commonly encountered in practice.
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where v∗ ≡ k∗−KNM K−1
MM k(x∗) is the difference between the actual and the

approximated covariance of f∗ and f , and c∗ ≡ k∗∗ − k(x∗)>K−1
MM k(x∗) is the

predictive variance at x∗ of a full GP with the support inputs as training inputs.

3.3.4 Selecting the Support Points

One way of addressing the problem of selecting the M support inputs is to
select them from among the N training inputs. The number of possible sets of
support inputs is combinatorial, CM

N .7 Since we will typically be interested in
support sets much smaller than the training sets (M < N), this implies that
the number of possible support sets is roughly exponential in M . Ideally one
would like to evaluate the evidence for the finite linear model approximation
(3.23), for each possible support input set, and then select the set that yields a
higher evidence. In most cases however, this is impractical due to computational
limitations. One suboptimal solution is to opt for a greedy method: starting
with an empty subset, one includes the input that results in a maximal increase
in evidence. The greedy method exploits the fact that the evidence can be
computed efficiently when a case is added (or deleted) to the support set.

Suppose that a candidate input xi from the training set is considered for inclu-
sion in the support set. The new marginal likelihood is given by:

Li =
1

2
log |Q̃i|+

1

2
y>Q̃−1

i y , Q̃i ≡ σ2 I + KNM̃ K−1

M̃M̃
K>
NM̃

, (3.30)

where M̃ is the set of M + 1 elements containing the M elements in the current
support set plus the new case xi. Q̃i is the updated covariance of the evidence
of the RRGP augmented with xi. Let us deal separately with the two terms in
the evidence. The matrix inversion lemma allows us to rewrite Q̃i as:

Q̃i = σ−2 I− σ−4 KNM̃ Σi K
>
NM̃

, Σi =
[
K>
NM̃

KNM̃/σ
2 + KM̃M̃

]−1
,

(3.31)

where Σi is the covariance of the posterior over the weights augmented in wi,
the weight associated to xi. Notice that Σi is the same expression as Σ∗ in
(3.28) if one replaces the index ∗ by i. In both cases we augment the posterior
in the same way. Computing Σi from Σ costs therefore only O(NM).

The term of L quadratic in y can be rewritten as:

Qi =
1

2σ2
y>y − 1

2σ4
y>KNM̃ Σi K

>
NM̃

y , (3.32)

7CMN is “N choose M”: the number of combinations of M elements out of N without
replacement and where the order does not matter.
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and can be computed efficiently in O(NM) if Σ and K>NM y are known. In
Sect. A.3 we provide the expressions necessary for computing Qi incrementally
in a robust manner from the Cholesky decomposition of Σ. In Sect. 3.3.5 we
describe Smola and Bartlett’s Sparse Greedy Gaussian Process (SGGP) Regres-
sion which uses Qi solely as objective function for selecting the support set in
a greedy manner.

The term of L that depends on log |Q̃i| can be expressed as:

Gi =
1

2

[
log |Σi| − log |KM̃M̃ |+N logσ2

]
, (3.33)

and computed at a cost of O(NM) (the cost of computing K>NM ki). The
algebra in Sect. A.3 can be used to update the determinants from the incremental
Cholesky decompositions at no additional cost.

The overall cost of evaluating the evidence for each candidate point for the
support set is O(NM). In practice, we may not want to explore the whole
training set in search for the best candidate, since this would be too costly. We
may restrict ourselves to exploring some reduced random subset.

3.3.5 Sparse Greedy Gaussian Process Regression

Smola and Bartlett (2001) and Schölkopf and Smola (2002) present a method
to speed up the prediction stage for Gaussian processes. They propose a sparse
greedy techniques to approximate the Maximum a Posteriori (MAP) predictions,
treating separately the approximation of the predictive mean and that of the
predictive variance.

For the predictive mean, Smola and Bartlett adopt a finite linear approximation
of the form given by (3.22), where no extra weight w∗ associated to the test input
is added. Since this is a degenerate GP, it is understandable that they only use
it for approximating the predictive mean: we now know that the predictive
uncertainties of degenerate GPs are inappropriate.

The main contribution of their paper is to propose a method for selecting the
M inputs in the support set from the N training inputs. Starting from a full
posterior distribution (as many weights as training inputs), they aim at finding
a sparse weight vector (with only M non-zero entries) with the requirement that
the posterior probability at the approximate solution be close to the maximum of
the posterior probability (quoted from (Schölkopf and Smola, 2002, Sect. 16.4.3)).
Since the optimal strategy has again a prohibitive cost, they propose a greedy
method where the objective function is the full posterior evaluated at the optimal
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weights vector with only M non-zeros weighs, those corresponding to the inputs
in the support set.

The posterior on wN (full posterior) is given by (3.26), where M = N , i.e.
matrix KNM is replaced by the full N ×N matrix K. The objective function
used in (Smola and Bartlett, 2001; Schölkopf and Smola, 2002) is the part of
the negative log posterior that depends on wN , which is the following quadratic
form:

−y>KNM wM +
1

2
w>M

[
K>NM KNM + σ2 KMM

]
wM , (3.34)

where as usual wM denotes the part of wN that hasn’t been clamped to zero.
Notice that it is essential for the objective function to be the full posterior
evaluated at a sparse wN , rather than the posterior on wM (given by (3.26)
with indeed M 6= N). In the latter case, only the log determinant of the
covariance would play a rôle in the posterior, since wM would have been made
equal to the posterior mean, and we would have a completely different objective
function from that in (Smola and Bartlett, 2001; Schölkopf and Smola, 2002).

Given two candidates to the support set, the one resulting in a support set for
which the minimum of (3.34) is smaller is chosen. The minimum of (3.34) is
given by:

−1

2
y>KNM

[
K>NM KNM + σ2 KMM

]−1
K>NM y , (3.35)

and it is in fact this quantity that is minimised with respect to the M elements
in the support set in a greedy manner. The expression given in (3.35) with
M 6= N is in fact an upper bound to the same expression with M = N , which
corresponds to selecting the whole training set as active set. Smola and Bartlett
(2001); Schölkopf and Smola (2002) also provide a lower bound to the latter,
which allows them to give a stop criterion to the greedy method based on the
relative difference between upper and lower bound. The computational cost of
evaluating the expression given in (3.35) for each candidate to the support set is
O(NM), and use can be made of an incremental Cholesky factorisation for nu-
merical stability. The expressions in Sect. A.3 can be used. The computational
cost is therefore the same for the SGGP method as for the greedy approach
based on maximising the evidence that we propose in Sect. 3.3.4.

3.3.5.1 Why Does it Work?

One might at this point make abstraction from the algorithmic details, and ask
oneself the fair question of why obtaining a sparse weight vector that evaluated
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under the posterior over the full weight vector yields a probability close to that
of the non-sparse solution is a good approximation. Along the same lines, one
may wonder whether the stopping criterion proposed relates in any way with
good generalisation.

It turns out that the method often works well in practice, in a very similar
way as our proposed greedy criterion based on maximising the evidence. One
explanation for the SGGP method to select meaningful active sets is that it
is in fact minimising a part of the negative log evidence Li, given by (3.30).
Indeed, notice that minimising the objective function given by (3.35) is exactly
equivalent to minimising the part of the negative log evidence quadratic in y
given by (3.32). So why would the method work if it only maximises Qi (3.32),
the part of Li that has to do with fitting the data, and ignores Gi (3.33), the part
that enforces regularisation? We believe that over-fitting will seldom happen
because M is typically significantly smaller than N , and that therefore we are
selecting from a family of models that are all very simple. In other words, it is
the sparsity itself that guarantees some amount of regularisation, and therefore
Gi can be often safely omitted from the negative log evidence. However, as we
will see in what follows, the SGGP can fail and indeed over-fit. The problem
is that the SGGP fails to provide a valid stopping criterion for the process of
adding elements to the support set.

3.3.5.2 But, How Much Sparsity?

If sparsity seemingly ensures generalisation, then it would also seem that a
criterion is needed to know the minimum sparsity level required. In other words,
we need to know how many inputs it is safe to include in the support set.
(Smola and Bartlett, 2001; Schölkopf and Smola, 2002) use a measure they call
the “gap”, which is the relative difference between the upper and lower bound
on the negative log posterior. They choose an arbitrary threshold below which
they consider that the approximate posterior has been maximised to a value close
enough to the maximum of the full posterior. Once again we fail to see what
such a criterion has to do with ensuring generalisation, and we are not the only
ones: Schwaighofer and Tresp (2003) report “we did not observe any correlation
between the gap and the generalisation performance in our experiments”. It
might be that for well chosen hyperparameters of the covariance, or for datasets
that do not lend themselves to sparse approximations, keeping on adding cases
to the support set cannot be harmful. Yet the SGGP does not allow learning
the hyperparameters, and those must be somehow guessed (at least not in a
direct way).

We provide a simple toy example (Fig. 3.2) in which the value of minimising
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the negative log evidence becomes apparent. We generate 100 one-dimensional
training inputs, equally spaced from −10 to 10. We generate the corresponding
training inputs by applying the function sin(x)/x to the inputs, and adding
Gaussian noise of variance 0.01. We generate the test data from 1000 test inputs
equally spaced between −12 and 12. We use a squared exponential covariance
function as given by (3.1), and we set the hyperparameters in the following way:
the lengthscale is θ1 = 1, the prior standard deviation of the output signal is
θ2 = 1 and the noise variance is σ2 = θ3 = 0.01. Note that we provide the
model with the actual variance of the noise. We apply the greedy strategy for
selecting the support set by minimising in one case the negative log evidence
and in the other case the negative log posterior. Interesting things happen. We
plot the test squared error as a function of M , the size of the support set for
both greedy strategies. Both have a minimum for support sets of size around 8
to 10 elements, and increase again as for larger support sets. Additionally, we
compute the negative log evidence as a function of M , and we see that it has a
minimum around the region where the test error is minimal. This means that
we can actually use the evidence to determine good levels of sparsity. We also
plot the “gap” as a function of M , and indicate the location of the arbitrary
threshold of 0.025 used by Smola and Bartlett (2001); Schölkopf and Smola
(2002). The gap cannot provide us with useful information in any case, since it
is always a monotonically decreasing function of M ! The threshold is absolutely
arbitrary, and has no relation to the expected generalisation of the model.

3.3.5.3 Approximating Predictive Variances.

Obtaining the predictive variance based on the posterior of the weights associ-
ated to the support set is a bad idea, since those will be smaller the further away
the test input is from the inputs in the support set. An explicit approximation
to the predictive variance of a full GP, given in (3.6) is proposed instead. For
a given test input x∗, Smola and Bartlett (2001); Schölkopf and Smola (2002)
propose to approximate the term:

−k>∗
[
K + σ2 I

]−1
k∗ , (3.36)

using the fact that it is the minimum (with respect to the n× 1 weights vector
β, one weight associated to each training input) of the quadratic form:

−2 k>∗ β + β>
[
K + σ2 I

]
β . (3.37)

They then go on to propose finding a sparse version βM of β with only M
non-zero elements.8 The method is again a greedy incremental minimisation of

8This M does not have anything to do with the number of inputs in the support set of
our previous discussion. It corresponds to a new support set, this time for approximating
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Figure 3.2: Comparison between a sparse greedy approximation based on min-
imising the negative log evidence, and one based on minimising the negative log
posterior. In both figures the horizontal axis indicates the size of the support
set. Top: the solid black curve is the negative log evidence, with values given
by the right vertical axis, the other two curves are the test squared error of the
greedy methods based on minimising the negative log evidence (solid gray) and
the negative log posterior (dashed black), with values given on the left vertical
axis. Bottom: for the SGGP approach the upper and lower bounds on the neg-
ative lower posterior are given, and the vertical dotted line shows the minimum
size of the support set for which the “gap” is smaller that 0.025.

the expression in (3.37). For a given choice of active elements (non-zero) in β,
the minimum of the objective function is given by:

−k(x∗)
> [KMM + σ2 I

]−1
k(x∗) , (3.38)

where here again k(x∗) represents an M × 1 vector containing the covariance
function evaluated at x∗ and at the M inputs in the support set. Again, the
support set yielding a minimal value of the expression in (3.38) will be cho-
sen. The expression in (3.38) is also an upper bound on the (3.36), which
means that bad approximations only mean an overestimate of the predictive
variance, which is less bad than an underestimate. For each candidate to the

the predictive variance at x∗. We insist on using the same symbol though because it still
corresponds to a support set with M < N .
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support set, (3.38) can be evaluated in O(M 2) (this cost includes updating[
KMM + σ2 I

]−1
). Luckily, in practice the typical size of the support sets for

approximating predictive variances is around one order of magnitude smaller
than the size of the support set for approximating predictive means. Smola
and Bartlett (2001); Schölkopf and Smola (2002) also provide a lower bound to
(3.36), which allows to use a similar stop criterion as in the approximation of
the predictive means.

3.3.5.4 Limitations

Though it does work in practice and for the datasets on which we have tried it,
there is no fundamental guarantee that SGGP will always work, since it does
not maximise the whole of the evidence: it ignores the term in log |Q̃|.

The hyperparameters of the covariance function need to be known: they cannot
be learned by maximising the posterior, since this would lead to over-fitting.
For example, one would obtain zero lengthscales with the squared exponential
covariance function.

While for approximating the predictive means one needs to find a unique support
set, a specific support set needs to be estimated for each different test input
if one wants to obtain good approximations to the predictive variance. The
computational cost becomes then O(kNM 2) per training case, where k is the
size of a reduced random search set (Smola and Bartlett (2001) suggest using
k = 59).

3.4 Experiments

We use the KIN40K dataset (for more details see Rasmussen, 1996, Chap. 5).
This dataset represents the forward dynamics of an 8 link all-revolute robot arm.
The dataset contains 40000 examples, the input space is 8-dimensional, and the
1-dimensional output represents the distance of an end-point of the robot arm
from a fixed point. The mapping to be learned is low noise and highly nonlinear.
This is of importance, since it means that the predictions can be improved by
training on more data, and sparse solutions do not arise trivially.

We divide the dataset into 10 disjoint subsets of 4000 elements, that we then
further split into training and test sets of 2000 elements each. The size of the
support set is set to 512 elements in all cases. For each method we perform



60 Reduced Rank Gaussian Processes

then 10 experiments, and compute the following losses: the Mean Absolute Er-
ror (MAE), the Mean Squared Error (MSE) and the Negative Test Log-density
(NTL). We also compute the training negative log likelihood per training case.
Averaged results over the 10 disjoint sub-datasets are shown in the upper part
of Table 3.1. SGGP is the sparse support set selection method proposed by
Smola and Bartlett (2001); to compute predictive uncertainties, we do not use
the sparse greedy approximation they suggest, since it has a too high compu-
tational cost of O(kNM2) per test case, with k = 59 and M ≈ 250 in our case
to reach gap < 0.025. As an alternative, they suggest to use the predictive un-
certainties given by a reduced GP trained only on the support set obtained for
approximating the predictive mean; the computational cost is low, O(M 2) per
test case, but the performance is too poor to be worth reporting (NTL of the or-
der of 0.3). To compute predictive uncertainties with the SGGP method we use
the expressions given by (3.27) and (3.29). SGEV is our alternative greedy sup-
port set selection method based on maximising the evidence. The HPEV-rand
method selects a support set at random and learns the covariance hyperparam-
eters by maximising the evidence of the approximate model, as described in
Sect. 3.3.1. The HPEV-SGEV and HPEV-SGGP methods select the support
set for fixed hyperparameters according to the SGEV and and SGGP methods
respectively, and then for that selected support set learn the hyperparameters by
using HPEV. This procedure is iterated 10 times for both algorithms, which is
enough for the likelihood to apparently converge. For all algorithms we present
the results for the näıve non-augmented degenerate prediction model, and for
the augmented non-degenerate one.

The experimental results show that the performance is systematically superior
when using the augmented non-degenerate RRGP with an additional weight w∗.
This superiority is expressed in all three losses, mean absolute, mean squared
and negative test predictive density (which takes into account the predictive
uncertainties). We believe that the relevant loss is the last one, since it reflects
the fundamental theoretical improvement of the non-degenerate RRGP. The
fact that the losses related to the predictive mean are also better can be ex-
plained by the model being slightly more flexible. We performed paired t-tests
that confirmed that under all losses and algorithms considered, the augmented
RRGP is significantly superior than the non-augmented one, with p-values al-
ways smaller than 1%. We found that for the dataset considered SGGP, SGEV
and HPEV-rand are not significantly different. It would then seem that learn-
ing the hyperparameters for a random support set, or learning the support set
for (carefully selected) hyperparameters by maximising the posterior or the ev-
idence are methods with equivalent performance. We found that both for the
augmented and the non-augmented case, HPEV-SGEV and HPEV-SGGP are
significantly superior to the other three methods, under all losses, again with
p-values below 1%. On the other hand, HPEV-SGEV and HPEV-SGGP are
not significantly different from each other under any of the losses.
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non-augmented augmented
method tr. neg ev. MAE MSE NTL MAE MSE NTL
SGGP – 0.0481 0.0048 −0.3525 0.0460 0.0045 −0.4613
SGEV −1.1555 0.0484 0.0049 −0.3446 0.0463 0.0045 −0.4562
HPEV-rand −1.0978 0.0503 0.0047 −0.3694 0.0486 0.0045 −0.4269
HPEV-SGEV −1.3234 0.0425 0.0036 −0.4218 0.0404 0.0033 −0.5918
HPEV-SGGP −1.3274 0.0425 0.0036 −0.4217 0.0405 0.0033 −0.5920

2000 training - 2000 test

SGEV −1.4932 0.0371 0.0028 −0.6223 0.0346 0.0024 −0.6672
HPEV-rand −1.5378 0.0363 0.0026 −0.6417 0.0340 0.0023 −0.7004

36000 training - 4000 test

Table 3.1: Comparison of different learning methods for RRGPs on the KIN40K
dataset, for 2000 training and test cases (upper subtable) and for 36000 training
and 4000 test cases (lower subtable). The support set size is set to 512 for all
methods. For each method the training negative log marginal likelihood per
case is given, together with the Mean Absolute Error (MAE), Mean Squared
Error (MSE) and Negative Test Log-likelihood (NTL) losses. SGGP (Smola
and Bartlett, 2001) and SGEV (our alternative to SGGP based on maximising
the evidence) are based on learning the support set for fixed hyperparameters.
HPEV-random learns the hyperparameters for a random subset, and HPEV-
SGEV and HPEV-SGGP are methods where SGEV and SGGP are respectively
interleaved with HPEV, for 10 repetitions.

The lower part of Table 3.1 shows the results of an additional experiment we
made, where we compare SGEV to HPEV-rand on a larger training set. We
generate this time 10 disjoint test sets of 4000 cases, and 10 corresponding
training sets of 36000 elements. The size of the support sets remains 512. We
compute the same losses as earlier, and consider also the augmented and the
non-augmented RRGPs for making predictions. Paired t-tests9 confirm once
again the superiority of the augmented model to the non-augmented one for
both models and all losses, with p-values below 1%.

3.5 Discussion

We have proposed to augment RRGPs at test time, by adding an additional
weight w∗ associated to the new test input x∗. The computational cost for
the predictive mean increases to O(NM) per case, i.e. O(N) more expensive

9Due to dependencies between the training sets, assumptions of independence needed for
the t-test could be compromised, but this is probably not a major effect.
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than the non-augmented case. It might seem surprising that this is more ex-
pensive than the O(N) cost per case of the full GP! Of course, the full GP
has has an initial cost of O(N2) provided that the covariance matrix has been
inverted, which costs O(N3). Computing predictive variances has an initial cost
of O(NM2) like for the non-augmented case, and then a cost per case of O(NM)
which is more expensive than the O(M 2) for the non-augmented case, and be-
low the O(N2) of the full GP. It may be argued that the major improvement
brought by augmenting the RRGP is in terms of the predictive variance, and
that one might therefore consider computing the predictive mean from the non-
augmented model, and the predictive variance from the augmented. However,
the experiments we have conducted show that the augmented RRGP is sys-
tematically superior to the non-augmented, for all losses and learning schemes
considered. The mean predictions are also better, probably due to the gain in
flexibility by having an additional basis function.

Which method should be used for computing predictive variances? We have
shown that using the degenerate RRGP, (3.27), has a computational cost of
O(M2) per test case. Using the augmented non-degenerate RRGP is preferable
though because it gives higher quality predictive uncertainties, but the cost
augments to O(NM) per test case. Smola and Bartlett (2001) propose two pos-
sibilities. A cost efficient option, O(M 2) per test case, is to base the calculation
of all test predictive variances on the support set selected by approximating the
posterior, which is in fact equivalent to computing predictive variances from a
small full GP trained only on the support set. They show that the predictive
variances obtained will always be an upper bound on the ones given by the
full GP, and argue that inaccuracy (over estimation) is for that reason benign.
We found experimentally that the errorbars from a small full GP trained only
on the support set are very poor. The more accurate, yet more costly option
consists is selecting a new support set for each test point. While they argue
that the typical size of such test sets is very small (of the order of 25 for rea-
sonable hyperparameters for the abalone dataset, but of the order of 250 for the
KIN40K dataset), the computational cost per test case rises to O(kNM 2). As
we have explained, k is the size of a reduced random search set that can be fixed
to 59 (see Smola and Bartlett, 2001). For their method to be computationally
cheaper than our augmented RRGP, the support set that our method selects
should contain more than 59 × 252 = 36875 elements. This is two orders of
magnitude above the reasonable size of support sets that we would choose. In
the experiments, we ended up computing the predictive variances for the SGGP
from our expressions (3.27) and (3.29).

We found that none of the two possible “one-shot” approaches to training a
RRGP is significantly superior to the other. In other words, selecting support
sets at random and optimising the hyperparameters does not provide signifi-
cantly different performance than fixing the hyperparameters and selecting the
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support set in a supervised manner. Furthermore, on the dataset we did our
experiments SGGP and SGEV did not prove to be significantly different ei-
ther. We expect SGEV to perform better than SGGP on datasets where for
the given hyperparameters the learning curve saturates, or even deteriorates as
the support set is increased, as is the case in the example we give in Fig. 3.2.
Interleaving support set selection and hyperparameter learning schemes proves
on the other hand to be promising. The experiments on KIN40K show that this
scheme gives much superior performance to the two isolated learning schemes.

It is interesting to note the relation between the RRGP and the Nyström ap-
proximation proposed by Williams and Seeger (2001). In that approach the
predictive mean and variance are respectively given by:

m(x∗) = k>∗
[
KNM K−1

MM K>NM + σ2 I
]−1

y ,

v(x∗) = σ2 + k∗∗ + k>∗
[
KNM K−1

MM K>NM + σ2 I
]−1

k∗ .
(3.39)

These expressions are very similar to those obtained for the augmented RRGP,
given by (3.29). However, the additional term in the approximate covariance for
the augmented RRGP ensures that it is positive definite, see (Williams et al.,
2002), and that therefore our approach does not suffer from negative predictive
variances as is the case for the Nyström approximation for GPs.

We are currently working on a more exhaustive literature review of sparse GPs,
that will include experimental comparisons between the different approaches
that have recently been proposed. It will be interesting to see whether the
experiments suggest the existence of any clearly superior paradigm for sparse
GPs.
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Chapter 4

Uncertainty in the Inputs

When presented with pairs of inputs and outputs at training time, or with inputs
only a test time, we have until now made the extremely common assumption
that only the outputs are noisy, and we have explicitly modelled the output
noise. Consider first the situation where it is acceptable to think of the training
inputs as deterministic, but where the same cannot be done with the test inputs.
An example of such situation is the case of iterative time-series predictions with
GPs, discussed in Sect. 4.2, where the inputs are composed of previous pre-
dictions. Since GPs produce predictive distributions, we know that the inputs
to our model are random, and we know their distribution. When predicting
k-steps ahead, we rely on k − 1 intermediate predictions, all of which uncer-
tain. Failing to take into account this accumulated uncertainty implies that the
predictive distribution of the k-th prediction is very overconfident. Addressing
this problem raises the issue of how to predict with a GP at an uncertain input
with known distribution. In Sect. 4.1 we derive the equations for computing
a Gaussian approximation to the predictive distribution at an uncertain input,
with known Gaussian distribution, for GPs and for RVMs. Indeed, unless the
model is linear, Gaussian input distributions are mapped by the non-linearities
into arbitrary predictive distributions, hence the need to approximate these by
a Gaussian. This need is also motivated by the fact that in propagating the un-
certainty in iterative time-series predictions, we will want to always have inputs
to the GP with normal distributions.
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The issue of how to train a GP when the training inputs are noisy has proven to
be more challenging. We present our attempts to addressing it in Sect. 4.3, where
we first provide a brief enumeration of different ways of dealing with learning
with uncertain inputs proposed in the literature. Under a Bayesian perspective,
one would want to integrate over the uncertain inputs. As is often the case, this
integration is analytically intractable, and we propose two approximations. The
first consists in getting rid of the integral altogether by finding the maximum of
the joint posterior over uncertain inputs and GP hyperparameters. This proves
to be a challenging optimisation problem, with very many undesirable spurious
optima that lead to over-fitting. The optimisation can be made practical by
using an annealing approach, where instead of estimating the output noise we
gradually reduce it while learning the remaining parameters. A feature of this
method is that it effectively performs an imputation of the “true” inputs, which
may be of interest in its own right. Unfortunately no obvious stopping criterion
has been found for the annealing procedure. Knowledge of the actual output
noise level is required, which is not satisfactory. In our second approach to learn-
ing GPs with input noise, we propose to iteratively sample from the posterior on
uncertain inputs, and learn the hyperparameters by maximising their posterior.
This can naturally be cast as a “stochastic” Expectation-Maximisation (EM)
algorithm. While this approach allows us to learn the output noise, it increases
the already high computational cost of training a GP model, and is therefore
impractical for datasets larger than a few hundred samples.

4.1 Predicting at an Uncertain Input

Suppose we have trained our model, GP or RVM, on a training set with inputs
{xi|i = 1, . . . , N} ⊂ RD organised as rows in matrix X , and corresponding
targets y = [y1, . . . , yN ]>. Let θ represent here the set of learned parameters
(e.g. lengthscales and output noise variance). For a deterministic test input x∗,
the predictive distribution of the function value p(f∗|y,x∗, X, θ) (f∗ = f(x∗) for
simplicity) is Gaussian with mean and variance given for GPs by (3.6), and for
RVMs by (2.10). For convenience we will reproduce these expressions here, in a
slightly different form. For a GP with covariance function K(·, ·), the predictive
mean and variance are given by:

m(x∗) =

N∑

i=1

βiK(x∗,xi) , v(x∗) = k∗∗−
M∑

i,j=1

Ωij K(x∗,xi)K(x∗,xj) ,

(4.1)

where we have defined Ω ≡ (K + σ2 I)−1, where Kij = K(xi,xj) is the covari-
ance matrix of the GP, σ2 is the estimated output noise variance, and I is the
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identity matrix. We also have defined βi as the i-the element of column vector
β = Ωy. For RVMs, the predictive mean and variance are given by:

m(x∗) =
M∑

i=1

µi φi(x∗) , v(x∗) =
M∑

i,j=1

Σij φi(x∗)φj(x∗) , (4.2)

where M is the number of Relevance Vectors (RVs), and µ = [µ1, . . . , µN ]> and
Σ are the mean and the covariance of the weights posterior, (2.19) and (2.18).
φi(x∗) ⊂ [RD → R] is the i− th basis function.

Consider now the situation where the test input is random, with Gaussian in-
put distribution, x∗ ∼ N (u,S), with known mean and variance. The new,
marginal predictive distribution of f∗ is obtained by integrating over the input
distribution:

p(f∗|u,S) =

∫
p(f∗|x∗) p(x∗|u,S) dx∗ , (4.3)

where for simplicity we will from now on write the predictive distribution as
p(f∗|x∗) and the marginal predictive distribution as p(f∗|u,S), omitting to
explicitly condition on y, X and θ. We call this new predictive distribution
“marginal” because it is obtained by marginalising the predictive distribution
with respect to the input x∗ and the conditioning is now on the parameters
of the input distribution u and S. For most covariance functions and basis
functions, the predictive distribution depends highly non-linearly on x∗, which
on the one hand makes the analytic integration impossible, and on the other
hand implies that the marginal predictive distribution is not Gaussian anymore,
and can probably not easily be parametrised in terms of standard distributions.
This effect is illustrated in Fig. 4.1, where we have used sampling and then
smoothened with a Parzen estimator to obtain an estimate of the marginal pre-
dictive distribution, which is in this case multi-modal. In the same figure we
show the mean and variance of two different Gaussian approximations to the
marginal predictive distribution, which we describe in what follows.

One obvious possibility for approximating the integral in (4.3) is to use a simple
Monte-Carlo approach:1

p(f∗|u,S) ' 1

T

T∑

t=1

p(f∗|xt∗) , (4.4)

where {xt∗|t = 1 . . . ,T} are independent samples from p(x∗|u,S), which is very
easy to sample from since it is Gaussian. It might be advantageous however to
have a parametric approximation to the marginal predictive distribution, which

1This is how we obtained the “sampling” approximation in Fig. 4.1



68 Uncertainty in the Inputs

−9 −8 −7 −6 −5 −4 −3 −2
−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 4.1: Prediction with uncertain input. On the x-axis, the dashed line
represents the Gaussian input distribution, with mean located by the triangle,
from which we draw 100 samples (dots under it). In the middle of the figure,
the solid line represents the true underlying function. We fit a model to it,
and propagate the 100 input samples through the model (dots close to the true
function). On the y-axis we project the 100 predicted values (dots) and use
them to estimate the predictive density (dashed line), with mean located by the
triangle. The error bar with a circle and the error bar with a star show the
mean and 95% confidence interval of the Gaussian approximation with exact
computation of mean and variance and of the method with Taylor expansion
respectively.

is why we settle for projecting it onto a Gaussian distribution. We will there-
fore now be concerned with computing its mean and variance. These can be
obtained using respectively the law of iterated expectations and law of condi-
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tional variances:

m(u,S) = Ef∗ [f∗ Ex∗ [p(f∗|x∗)]] = Ex∗ [Ef∗ [f∗ p(f∗|x∗)]] (4.5)

= Ex∗ [m(x∗)] ,

v(u,S) = Ef∗

[
f2
∗ Ex∗ [p(f∗|x∗)]

]
− (Ef∗ [f∗ Ex∗ [p(f∗|x∗)]])2

= Ex∗

[
Ex∗ [f

2
∗p(f∗|x∗)]

]
− (Ex∗ [Ex∗ [f∗ p(f∗|x∗)]])2

= Ex∗ [v(x∗) +m(x∗)
2]− Ex∗ [m(x∗)]

2

= Ex∗ [v(x∗)] + Varx∗ [m(x∗)] , (4.6)

where Ex∗ and Varx∗ indicate respectively the expectation and the variance un-
der p(x∗|u,S), and Ef∗ and Varf∗ the expectation and variance under p(f∗|x∗).

The analytical difficulties are however still present, since we now need to com-
pute the terms Ex∗ [m(x∗)], Ex∗ [m(x∗)2] and Ex∗ [v(x∗)]. For the general case,
one possibility is to perform a Taylor expansion of m(x∗) and v(x∗) about
the mean of the input distribution, u. No matter what the order of the ap-
proximation is, things become analytically tractable since the integrals are over
polynomials times Gaussians. In (Girard et al., 2003) this approximation is de-
scribed, and in a more extended manner in (Girard et al., 2002). We will refer to
the computation of the mean and variance of the predictive distribution as the
“approximate” moment matching method, as opposed to the “exact” moment
matching method that we describe immediately.

4.1.1 Exact Moment Matching

In (Quiñonero-Candela et al., 2003a) we made the observation that for certain
types of covariance functions and basis functions exact computation of the mean
and variance of the predictive distribution are possible. In particular, we derived
the expressions for the particular yet fairly common case of squared exponential
covariance and basis functions, (3.1) and (2.6) and reproduced below in (4.7),
and we will in this chapter restrict ourselves to this case only. The details of
this derivation were relegated to (Quiñonero-Candela et al., 2003b). Girard
(2004) has derived the expressions for exact moment matching for other forms
of covariance functions, like the linear case.

For convenience, let us reproduce here the expression of a squared exponential
covariance function:

K(xi,xj) = θ2
D+1 exp

(
−1

2
(xi − xj)

>Θ−1(xi − xj)

)
, (4.7)
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where θD+1 relates to the amplitude of the functions generated by the GP, and
Θ is a diagonal matrix whose elements {θd|d = 1, . . . , D} are the lengthscales
in the d-th dimensions. For the RVM, the basis functions are given by φi(xj) =
K(xi,xj) with θD+1 = 1. We will perform the derivations explicitly (even
verbosely) only for the GP case. Since those for RVMs are very similar, we will
only give the final expressions.

Computing the mean. From (4.5) and (4.1) have:

m(u,S) =

∫
m(x∗) p(x∗|u,S) dx∗ =

N∑

i=1

βi li = β>l , (4.8)

where l is a column vector with elements li, that are given by:

li =

∫
K(x∗,xi) p(x∗|u,S) dx∗ . (4.9)

Computing li is a simple task, since it is the integral in x∗ of the product of
two Gaussians in x∗ except for a normalisation constant. Indeed K(x∗,xi) =
ZK N (xi,Θ) where the normalisation constant is ZK = θ2

D+1 (2π)D/2|Θ|1/2.
Using the algebra provided in App. A.2 (with P = I), we obtain:

li =θ2
D+1|I + S Θ−1|−1/2 exp

(
−1

2
(u− xi)

>(Θ + S)−1(u− xi)

)

=K(u,xi) |I + S Θ−1|−1/2

· exp

(
1

2
(u− xi)

>(Θ + S)−1SΘ−1(u− xi)

)
.

(4.10)

Interestingly, the new mean of the marginal predictive distribution is very similar
to the mean of the predictive distribution when predicting at u. Indeed, it is a
weighted sum, with the same weight vector β as for the deterministic case, of
evaluations of a squared exponential covariance function. This new covariance
function is given by K̃(u,xi) = li. It is easy to see that if x∗ = u is certain,
and therefore S is the zero matrix, then K̃(u,xi) = K(u,xi) and the marginal
predictive mean is equivalent to the predictive mean at u. In the case where
x∗ is uncertain, to compare both covariance functions let us write the following
function of v = u− xi:

g(v) = log
K̃(u,xi)

K(u,xi)
= v>(Θ + S)−1SΘ−1 v − log |S Θ−1 + I| . (4.11)

We see that g(v) is convex. When v = 0, we have g(v) < 0.2 From convexity
arguments, for any v in the region inside the ellipse centred at 0 defined by

2This is because |S Θ−1 + I| > 1, which we get from the fact that for A and B positive
definite |A + B| ≥ |A|+ |B|.
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g(v) = 0, we have g(v) < 0 which implies K̃(u,xi) < K(u,xi). Furthermore,
we roughly see that the radius of the ellipse increases with the ratio of the de-
terminant of S to that of Θ. We deduce that when computing the marginal
predictive mean, the more uncertain x∗ is with respect to the covariance length-
scales, the less weight the targets of the inputs close to u get and the more those
that are far. This has a smoothing effect, analogous to that of increasing the
lengthscales in a standard GP. It is not surprising to get smoother functions
if the inputs are uncertain. Compared to the first order Taylor approximation
used in (Girard et al., 2003), we do not have anymore that m(u, S) = m(u),
i.e. the marginal predictive mean is not anymore the predictive mean at u; under
that approach there was no smoothing of the predictive mean.

For the RVM, the marginal predictive mean is given by:

m(u,S) = µ>l , (4.12)

where for computing l we have set K(u,xi) = φi(u).

Computing the variance. From (4.6) we see that the marginal predictive
variance is the sum of the expected marginal variance and the variance of the
predictive mean, v(u,S) = Ex∗ [v(x∗)] + Varx∗ [m(x∗)]. Using (4.1) we see that
these two terms are respectively given by:

Ex∗ [v(x∗)] = θ2
D+1 −

N∑

i,j=1

Ωij Lij = θ2
D+1 − Tr[ΩL] ,

Varx∗ [m(x∗)] = Ex∗ [m(x∗)
2]− Ex∗ [m(x∗)]

2

=

N∑

i,j=1

βiβj Lij − [β>l]2 = Tr[ββ> (L− l l>)] ,

(4.13)

where Ex∗ [m(x∗)]2 is readily obtained from (4.8), and matrix L has elements
Lij given by:

Lij =

∫
K(x∗,xi)K(x∗,xj) p(x∗|u,S) dx∗ . (4.14)

This integral is the product of three Gaussians in x∗. To see how we can compute
it, let us start by writing the product of the two covariance evaluations, which
is again proportional to Gaussian in x∗:

K(x∗,xi)K(x∗,xj) = ZKKN (xd,Θ/2) , (4.15)
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where we have defined xd = (xi + xj)/2, and where the normalisation constant
is given by:

ZKK = Z2
K(2π)−D/2|2Θ|−1/2 exp

(
−1

2
(xi − xj)

>(2Θ)−1(xi − xj)

)
. (4.16)

We have thus reduced the integrand in (4.14) to the product of two Gaussians
in x∗. The integral is thus the corresponding normalising constant, that can be
computed using the algebra in App.A.2, and allows us to obtain:

Lij =ZKK (2π)−D/2 |Θ/2 + S|−1/2 exp

(
−1

2
(u− xd)

> (Θ/2 + S)−1 (u− xd)

)

=K(u,xi)K(u,xj) |I + 2SΘ−1|−1/2

· exp

(
1

2
(u− xd)

>(Θ/2 + S)−1S (Θ/2)−1(u− xd)

)
.

(4.17)

We could now perform an analysis similar to previously, where we compare Lij
to K(u,xi)K(u,xj). We see that if x∗ = u is certain, S is the zero matrix and
the two quantities are equal. Let us consider the case where S is not zero. If
we define this time v = u−xd, and take the logarithm of the ratio between Lij
to K(u,xi)K(u,xj) and proceed as in (4.11), we again obtain that there exists
an ellipse in v-space (with radius that grows with S) such that if v is inside
the ellipse we have Lij < K(u,xi)K(u,xj), and the opposite if v is outside the
ellipse. This implies that Ex∗ [v(x∗)] will be smaller than v(u) when v is large
compared to S.

One might have initially thought that x∗ becoming random, the marginal pre-
dictive variance would become systematically larger than the predictive variance
at its mean, v(u,S) ≥ v(u). We now can understand how this is not necessarily
the case. Suppose we were in a region where the function was extremely flat, so
that there would be no contribution from the variance of the mean Varx∗ [m(x∗)].
Suppose in addition, that u was far away from the training points. We have
seen that in such case we would actually have Ex∗ [v(x∗)] < v(x∗), which would
result in a smaller marginal predictive variance: v(u,S) < v(u). Outside from
these particular situations, we have in practice experienced that the marginal
predictive variance of x∗ is generally greater than the predictive variance at u.

It is also reassuring to notice that for the case where S tends to zero, Lij tends
to K(u,xi)K(u,xj) and li tends to K(u,xi). This implies that Varx∗ [m(x∗)]
tends to zero, and that Ex∗ [v(x∗)] tends to v(u). Therefore as x∗ tends to
be deterministic and equal to u, v(u,S) tends to v(u). For S equals zero,
v(u,S) = v(u), as one had hoped.
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For the RVM, the marginal predictive variance is given by:

v(u,S) = Tr[ΣL] + Tr[µµ>(L− ll>)] , (4.18)

where again, for computing l and L we have set K(u,xi) = φi(u). Notice that
L appears in the expected variance, Tr[ΣL], with opposite sign as for the GP
case. This suggests that the inappropriate behaviour of the predictive variance
that we discussed in Sect. 2.5 persists for the marginal predictive variance. It
would probably be preferable to derive the equations for the marginal predictive
mean and variance for the RVM* (Sect. 2.5).

4.2 Propagation of the Uncertainty

In Sect. 2.3 we described the use of RVMs for non-linear time-series predictions.
In that setting we did limit ourselves to predicting at a fixed horizon, concretely
six steps ahead, and we only interested ourselves for the predictive mean. There
are many situations however, in which one may want to predict multiple steps
ahead, like for example finance and control, and be able to give good estimates
of the predictive uncertainty. Multiple step ahead time-series predictions can
typically be performed under two approaches. The first approach consists in
training the model to learn to predict on a fixed horizon of interest (direct
method) and the second in training the model to learn to predict on a short
horizon, and in reaching the horizon of interest by making repetitive one-step
ahead predictions (iterative method). Farmer and Sidorowich (1988) conclude
that iterative forecasting usually is superior to direct forecasting. The direct
method has the disadvantages that as the forecast horizon increases, the com-
plexity of the non-linear mapping increases as well, and the number of available
input-output training pairs decreases. For the iterative method, the complexity
of the non-linear mapping is much lower, and the model only needs to be trained
once no matter what the forecast horizon of interest is. The disadvantage of
the iterative method is that as the forecast horizon increases, the performance
is diminished by the accumulated uncertainty of the intermediate predictions.

In this section we interest ourselves for the multiple step ahead case, and in
particular for being able to take into account the fact that uncertain predictions
are being fed back into the model as inputs. We will exploit our ability to pre-
dict at an uncertain input to propagate the uncertainty in multiple step ahead
predictions, and obtain more appropriate predictive variances. Näıve iterative
methods do not account for the accumulated uncertainty in the predictive distri-
bution at a given horizon and soon become overconfident about the predictions.
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4.2.1 Näıve Iterative k-step Ahead Prediction

Consider the discrete time series given by a set {yt} of samples ordered according
to is an integer index t, and where the sampling period is constant. We model
the time-series with a non-linear autoregressive model, as we did in Sec. 2.3:

{
xt = [yt−1, . . . , yt−τ ]>

yt = f(xt) + ε
, (4.19)

where the input xt associated to time t is composed of previous outputs, up
to a given lag3 τ and we have an additive (white) noise with variance σ2

ε . For
notational convenience, we will add this noise variance to the expressions for the
predictive variance and marginal predictive variance: v(u,S) = v(u,S) + σ2

ε .
This expressions give us now the predictive variance of noisy targets yt directly
(instead of that of the associated noiseless function output f(xt)), and this is
convenient for us, since we will always be considering the noisy targets in what
follows.

Suppose the data is known up to time step T . The training set is composed
by the input-target pairs {xt, yt|t = 1, . . . , T}. Suppose we want to predict
the value of the time series at time T + k, i.e. k steps ahead. The first thing
we do is to form the input vector xT+1 = [yT , yT−1, . . . , yT+1−τ ]>, and since
it is deterministic we can use the expressions for the mean and variance of
the (standard) predictive distribution to obtain yT+1 ∼ N (m(xT ), v(xT )). We
now want to proceed to predict at yT+2, for which we form the input vector
xT+2 = [yT+1, yT−1, . . . , yT+2−τ ]>. Now this vector contains the stochastic
element yT+1 whose distribution we know, since we have just computed it. If
one was not able to predict at uncertain inputs, one would resort to the näıve
approach consisting in replacing the stochastic element by its mean ŷT+1 =
m(xT+1), and then using again the standard predictive mean and variance to
obtain yT+2. Let us give a schematic impression of how the process evolves,
where we place hats on the variables that have been approximated by their

3We are not concerned with the identification of the lag and assume it has a known, fixed
value.
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mean:

xT+1 = [yT , yT−1, . . . , yT+1−τ ]> → yT+1 ∼ N (m(xT+1), v(xT+1))

ŷT+1 = m(xT+1)

xT+2 = [ŷT+1, yt, . . . , yT+2−τ ]> → yT+2 ∼ N (m(xT+2), v(xT+2))

ŷT+2 = m(xT+2)

...

xT+k = [ŷT+k−1, ŷT+k−2, . . . , ŷT+k−τ ]> → yT+k ∼ N (m(xT+k), v(xT+k))

ŷT+k = m(xT+k)

This setup does not account for the uncertainty induced by each successive pre-
diction. For each recursion, the current state vector is considered deterministic,
ignoring the fact that the previous predictions that it contains as elements are in
fact random variables distributed according to the predictive distribution given
by the model. The predictive variance obtained after a few recursive predic-
tions is therefore way too small, and completely fails to reflect the accumulated
uncertainty.

4.2.2 Propagating the Uncertainty

Using the results derived in Sect. 4.1, we propose to formally incorporate the
uncertainty information about each successive iterated prediction. That is, as we
predict ahead in time, we now view the lagged outputs as random variables. The
input vectors, will therefore be random variables as they incorporate predictions
recursively, with multivariate Gaussian distributions xt ∼ N (ut,St). Suppose
as before, that data samples have been observed up to time T , and we wish to
predict k steps ahead. Let us see the step by step evolution of the input and
output distributions:

• at t = T + 1, xT+1 is deterministic:

uT+1 =




yT
. . .

yT+1−τ


 and ST+1 =




0 . . . 0
. . . . . . . . .
0 . . . 0


 ,

and since xT+1 = uT+1, yT+1 has a Gaussian predictive distribution given
by:

p(yT+1|xT+1) ∼ N (m(uT+1), v(uT+1)) ,
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• at t = T + 2, xT+2 is random, with one normally distributed component:

uT+2 =



m(uT+1)

. . .
yT+2−τ


 and ST+2 =



v(uT+1) . . . 0
. . . . . . . . .
0 . . . 0


 ,

and we know from Sect. 4.1 that the marginal predictive distribution of
yT+2 is generally not Gaussian anymore. We know however how to ap-
proximate it by a Gaussian:

p(yT+2|uT+2,ST+2) ∼ N (m(uT+2,ST+2), v(uT+2,ST+2)) .

We will in a similar way repeatedly approximate distributions of the next
iterated predictions by Gaussians. This does also ensure that the inputs
remain Gaussian, which is necessary for us to be able to compute the
marginal predictive distributions.

• at t = T + k, supposing that k > τ , xT+k is Gaussian with full covariance
matrix:

uT+k =



m(uT+k−1,ST+k−1)

. . .
m(uT+k−τ ,ST+k−τ )


 and

ST+k =




v(uT+k−1,ST+k−1) cov(yT+k−1, yT+k−2) . . . cov(yT+k−1, yT+k−τ )
cov(yT+k−1, yT+k−2) . . . . . . . . .

. . . . . . . . . . . .
cov(yT+k−1, yT+k−τ ) . . . . . . v(uT+k−τ ,ST+k−τ )


 ,

where a new term, the covariance between pairs of probabilistic predic-
tions, i.e. cov(yT+k−1, yT+k−2), has entered the computation of the co-
variance of the inputs. We discuss in Sect. 4.2.3 how to compute them. We
finally reach our objective, the marginal predictive distribution of yT+k,
which we have obtained after k recursive Gaussian approximations:

p(yT+k|xT+k) ∼ N (m(ut+k,St+k), v(ut+k ,St+k)) .

4.2.3 Input distribution

We can easily find a general expression for the Gaussian approximation to the
input distribution. At time t = T + k+ 1, the covariance matrix ST+k+1 of the
state is computed by removing its last row and column, and inserting a new
first row and column, which are the transpose of the other, since the covariance
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matrix is symmetric. This new first column is given by:

[ST+k+1]1:τ,1 =




v(uT+k ,ST+k)
cov(yT+k, yT+k−1)

. . .
cov(yT+k, yT+k−τ+1)


 =

[
v(uT+k,ST+k)

cov(yT+k, x̃T+k)

]
(4.20)

where x̃T+k is a shorter version of the state vector xT+k where the last element
has been truncated: as we incorporate the new prediction in the state vector, we
need to get rid of the oldest prediction. For simplicity in the notation, we will
compute the covariance cov(yT+k,xT+k) and then throw away the last element
of that vector to obtain cov(yT+k, x̃T+k). We have

cov(yT+k,xT+k) = ExT+k
[EyT+k

[yT+k xT+k]]− ExT+k
[xT+k] EyT+k

[yT+k] ,

= ExT+k
[m(xT+k) xT+k ]−m(uT+k ,ST+k) uT+k ,

(4.21)

where we have rewritten the joint distribution as the input distribution times
the predictive: p(yT+k xT+k) = p(yT+k|xT+k) p(xT+k), and ExT+k

denotes the
expectation over p(xT+k), and EyT+k

that over p(yT+k|xT+k). We now need to
compute the term:

ExT+k
[m(xT+k) xT+k ] =

∫
xT+km(xT+k) p(xT+k) dxT+k ,

=
T∑

i=1

βi

∫
xT+kK(xT+k,xi) p(xT+k) dxT+k .

(4.22)

We know from the computation of the predictive mean, given by (4.8), that
K(xT+k,xi) p(xT+k) is Gaussian in xT+k, with normalising constant li given
by (4.10).4 All that remains for us to do is to compute the mean of that Gaussian
distribution, which using the algebra in Sect. A.2, is seen to be given by:

ci = ST+k(ST+k + Θ)−1xi + [I− ST+k(ST+k + Θ)−1]xT+k , (4.23)

and is a convex combination of xi and xT+k . We now can express (4.22) in a
simpler form:

ExT+k
[m(xT+k) xT+k ] =

T∑

i=1

βi li ci , (4.24)

and reach our goal, the covariance between yT+k and xT+k:

cov(yT+k,xT+k) = ST+k(ST+k + Θ)−1
T∑

i=1

βili(xi − uT+k) . (4.25)

4Where we simply need to set S = ST+k and u = uT+k .
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Not surprisingly, the larger the lengthscales of the model, the more smoothness
and the smaller the covariance between predictions. Also, for small input un-
certainties (ST+k small), the covariances will also be small. This is due to the
fact that a part of the uncertainty of yT+k stems from the uncertainty of xT+k.
If xT+k was certain, its covariance with yT+k would obviously be zero.

4.2.4 Experiments

Is this section we report the experiments we performed in (Quiñonero-Candela
et al., 2003b), where the goal was to compare the performance of two methods
for propagating the uncertainty in iterated time-series predictions. The first
method is based on approximately computing the first two moments of the
marginal predictive distribution by using Taylor expansions, and was derived by
Girard et al. (2003), and the second method is based on the exact computation
of mean and variance, that we describe in Sect. 4.1.1. Both methods are based
on a recursive Gaussian predictive density (RGPD) computation, as described
in Sect. 4.2.2. For convenience we will give names to both methods: the method
based on approximately computing the moments will be called “approximate-
RGPD”, and the method based on exact computation of the moments will be
called “exact-RGPD”.

We will use the same dataset as in Sect. 2.3, the Mackey-Glass chaotic time series
(Mackey and Glass, 1977), which is well-known for its strong non-linearity. In
Sect. 2.3 we described the dataset, and we showed that non-linear models, in
particular RVMs, have a prediction error four orders of magnitude lower than
optimised linear models. The inputs are formed by τ = 16 samples. We train
a GP model with squared exponential covariance function, (3.1), on only 100
examples — enough to obtain a 1-step ahead normalised mean squared error
on the order of 10−4. Besides, we normalise the data and contaminate it with
a small amount of Gaussian noise with variance 10−3. Figure 4.2 shows the
result of making 100 iterative predictions using a GP model, both for the exact-
RGPD and the approximate-RGPD methods. By informal visual inspection, the
error-bars of the exact-RGPD seem to be better than those of the approximate-
RGPD. Consequently the exact-RGPD produces a better predictive density,
which we show in Fig. 4.3. The mean value of the predictions seems also to
be a slightly closer to the true target values for the exact-RGPD than for the
approximate-RGPD.

In order to better evaluate the performance of the proposed methods, for a
given prediction horizon, we compute the negative log predictive density, the
squared error and the absolute error. While the two last measures only take into
consideration the mean of the Gaussian predictive distribution, the first one also
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Figure 4.2: 100 iterated predictions for the exact-RGPD (dashed) and
approximate-RGPD (dotted): for each the thicker lines represent the mean of
the predictive distributions and the two thinner lines around represent the up-
per and lower bounds of the 95% confidence interval of the Gaussian predictive
distributions. The solid line shows the true target values.

takes into account its variance. We average over 200 repetitions with different
starting points (chosen at random from the series), and represent averages of
the three loss measures for prediction horizons ranging from 1 to 100. Figure
4.3 shows the results. The means are slightly better for the exact-RGPD, but
the predictive distribution is much improved. The better error-bars obtained by
the exact-RGPD result in a lower value of the negative log predictive density
for all values of the prediction horizon. The performance of the näıve iterative
method is identical to that of the approximate-RGPD in terms of absolute and
squared error. In terms of predictive density (since it produces unrealistic small
error-bars) its performance is so poor that it is not worth reporting.

4.2.5 Conclusion

In Sect. 4.1 we have derived analytical expressions for the exact computation of
the mean and variance of the marginalised predictive distribution for uncertain
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Figure 4.3: Negative log predictive density, mean absolute error and mean
squared error as a function of the iterative prediction horizon for the exact-
RGPD method (dashed) and for the approximate-RGPD (dotted). Averages
over 200 repetitions.

Gaussian test inputs. This analytical expressions are valid for GPs and RVMs
(extended linear models) with Gaussian or polynomial covariance or basis func-
tions. Our results extend the approximate method presented in (Girard et al.,
2003), where the mean prediction was unaffected by the input uncertainty. In
our case the input uncertainty biases the mean prediction, by smoothing, which
is interesting in itself for predictions on noisy inputs. Furthermore, in the con-
text of iterated time-series forecasting, described in Sect. 4.2.2, our exact-RGPD
not only gives much better error-bars, but the mean predictions are closer to
the true values, both in terms of absolute and squared error. Improving the
mean predictions was however not our primary objective, and we are essentially
satisfied with having obtained sensible predictive variances. Our expressions
have also recently been applied to reinforcement learning (Rasmussen and Kuss,
2004).
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4.3 On Learning GPs with Uncertain Inputs

We have touched the issue of using noisy inputs with GPs (and RVMs). In
Sect. 4.1 we have shown how to make predictions with a previously trained GP
(or RVM) on an uncertain test point. But this begs the obvious question: how
do we train GPs5 using noisy inputs?

When a regression or classification task is to be solved by training a statistical
model on noisy and/or missing inputs, the quality of the model we estimate
may suffer if we do not correctly account for the uncertainty inherent in the
training set. (This effect may actually occur in two separate but related ways,
one due to training with noisy inputs and the other due to extra noise in the
outputs caused by the noise in the inputs.) Statisticians have investigated this
problem in several guises: “total least-squares” (Golub and Loan, 1980) modifies
the cost of a regression problem to encourage the regressor to pass near both
noisy targets and uncertain inputs; the “errors-in-variables” model (Dellaportas
and Stephens, 1995; Carroll et al., 1995) deals directly with noisy inputs, both
in their natural form and as a method of fitting complex nonlinear models by
creating correlated virtual variables that thus have correlated noises. “Multiple-
imputation” (Rubin, 1987) combines the outputs of a series of models trained
with different replacements of the missing data. Recent work in machine learning
has also addressed this problem, either by attempting to integrate over miss-
ing inputs by learning the entire input distribution (Ghahramani and Jordan,
1994), or integrating over specific noisy points using approximate distributions
estimated during training (Tresp et al., 1994).

Let us formulate the problem for GPs, the standard training of which we de-
scribed in Sect. 3.1. In Sect. 4.1 we considered the case where a test input was
random, and we only had access to its normal distribution x∗ ∼ N (u,S). Here
we consider that we do not have access to the training inputs {xi}, but to a
noisy version of them:

ui = xi + νi , (4.26)

where the random variable νi represents i.i.d. Gaussian noise. The inputs are
assumed to be independent given their statistics, each input xi is a stochastic
variable with distributionN (ui,S). This assumption is reasonable provided that
the input distribution varies very slowly compared to the standard deviation of
the input noise.6 If we let the inputs be organised as rows in matrix X , the
input distribution, that we will also refer to as the prior distribution on the

5RVMs being a special instance of GPs, and since we are more interested in the latter, we
will not explicitly consider the particular case of RVMs.

6The author is grateful to Chris Williams for a comment on this.
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inputs, can be written as:

p(X |Φ) =

N∏

i=1

p(xi|φi) . (4.27)

We assume that we observe the statistics φi = {ui,Si} of each input xi, and we
write Φ = {φi} as the set of statistics of the distributions of all inputs. Without
loss of generality and for simplicity, we will only consider the case where for
a given input the noise is isotropic, that is that Si = si I. We are also given
a corresponding set of training targets, y = [y1, . . . , yN ]>, that differ from the
function values f(xi) by Gaussian iid. noise of variance σ2. If we are now given a
new certain input x∗ and asked to provide with the predictive distribution of its
associated target y∗, the Bayesian dream would be to integrate over uncertain
training inputs and over the hyperparameters of the covariance function, by
defining a prior p(θ) over the latter:78

p(y∗|x∗,y,Φ) =
1

p(y|Φ)

∫ ∫
p(y∗|x∗,y, X, θ) p(y|X, θ) p(X |Φ) p(θ) dXdθ ,

(4.28)

but this is unfortunately analytically intractable for most covariance functions,
and in particular for the squared exponential, (3.1), that we consider here.
There are three options we could consider. The first and most obvious one is
approximate the integration by sampling both over the inputs and the hyperpa-
rameters, using Markov Chain Mote-Carlo (MCMC) sampling methods. There
are two other approaches which we will discuss here. One is to do MAP on the
hyperparameters, and sample over the weights. To see how to do this let us
re-write the troublesome integral using Bayes rule:

p(y∗|x∗,y,Φ) =

∫ ∫
p(y∗|x∗,y, X, θ) p(y|X, θ) p(X |Φ)

p(θ|y,Φ)

p(y|θ,Φ)
dXdθ

≈
∫ ∫

p(y∗|x∗,y, X, θ) p(y|X, θ) p(X |Φ)
δ(θMAP )

p(y|θ,Φ)
dXdθ

=

∫
p(y∗|x∗,y, X, θMAP ) p(X |y, θMAP ,Φ) dX ,

(4.29)

where we still need to sample from the posterior distribution over the uncertain
inputs, p(X |y, θMAP ,Φ). We also need to obtain the maximum of the posterior
over the hyperparameters: p(θ|y,Φ) ∝ p(y|θ,Φ) p(θ). We see that if we define an

7In Sect. 3.1 we had learned θ using Maximum Likelihood II (MLII), which is equivalent
to the MAP solution with an flat prior.

8For notational convenience, we absorb the estimate of the output noise, σ2 , in the set of
hyperparameters θ.
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improper flat prior over θ, maximising the posterior is equivalent to maximising
the marginal likelihood:

p(y|θ,Φ) =

∫
p(y|θ,X) p(X |Φ) dX , (4.30)

averaged over the input distribution. We will see in Sect.4.3.2 that this can
easily be done with an EM algorithm where the inputs are treated as hidden
variables.

In Sect. 4.3.1 we present a second approximation to (4.28), consisting in esti-
mating both the hyperparameters and the uncertain inputs by doing MAP. To
see what we mean let us write again the intractable integral, (4.28), using Bayes
rule:

p(y∗|x∗,y,Φ) =

∫ ∫
p(y∗|x∗,y, X, θ) p(y|X, θ)

p(X, θ|y,Φ)

p(y|X, θ) dXdθ

≈
∫ ∫

p(y∗|x∗,y, X, θ) p(y|X, θ)
δ(XMAP , θMAP )

p(y|X, θ) dXdθ

= p(y∗|x∗,y, XMAP , θMAP ) ,

(4.31)

where the difficulty lies now only the maximisation of the joint posterior over
θ and X . Using again a flat prior over hyperparameters, the joint posterior is
given by:

p(X, θ|y,Φ) ∝ p(y|X, θ) p(X |Φ) , (4.32)

which can be seen as a form of penalised likelihood, where both inputs and
hyperparameters are learned. This approach is in fact similar to a line of at-
tack, pioneered by Weigend et al. (1996), in which rather than integrating over
uncertain data, we try to train our model accounting for the noise in the inputs
and at the same time use our model to help us infer their true values. This
has the advantage of being much more tractable than the goal of integration, as
well as producing as an output of our algorithm, “cleaned” versions of the noisy
inputs which may be of interest in its own right. We will see that the intuition
behind this first approach is the same as Weigend’s: we set up a model that is
allowed to move inputs away from their observed values if it substantially im-
proves the fitting of the outputs, but not if they move too far. However, unlike
Weigend’s more heuristic cost function, our method is somewhat more founded,
since it attempts to approximate a fully probabilistic model. One consequence
of the MAP approach is that it avoids fitting over-smooth models and does not
“underestimate the slopes” (Carroll et al., 1995). Another consequence is that
we return a “cleaned” version of the input data, which can be useful in its own
right. Of course this corrected data is only as reliable as our belief that the true
underlying function is close to one of the family of functions our GP prior can
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generate. As we will discuss, this approach can easily lend itself to over-fitting,
and we are forced to use a simulated annealing procedure to avoid the numerous
undesirable spurious maxima.

4.3.1 Maximum Posterior Input Imputation

We want to maximise the joint posterior of hyperparameters and uncertain in-
puts, given by (4.32). We decide to minimise equivalently its negative logarithm:

P = − log p(y|X, θ)−
N∑

n=1

log p(xn|φn)

= N log 2π +
1

2
log |Q|+ 1

2
y>Q−1 y +

1

2

N∑

n=1

log sn +
1

2

N∑

n=1

||xn − un||2
sn

,

(4.33)

where for convenience we have defined Q = K + σ2 I. The task that remains is
now to compute the gradient of P wrt. X and θ, and use some gradient ascent
algorithm to perform the minimisation. Computing the gradient wrt. θ is a task
that we already have done:

∂P
∂θi

= − ∂

∂θi
log p(y|X, θ) ,

since it corresponds to the derivatives of the standard GP negative log evidence
with known inputs, and we refer to (3.8) for the details. To compute derivatives
wrt. the inputs, let us denote as usual the d-th component of vectors xi and ui
by Xid and Uid respectively. We have:

∂ P
∂Xid

=
1

2
Tr(Q−1 ∂K

∂Xid
)− 1

2
y>Q−1 ∂K

∂Xid
Q−1y +

Xid − Uid
si

, (4.34)

and the gradient of K with respect to Xid is given by

[
∂K

∂Xid

]

lm

=

{
0 l,m 6= i

− 1
θ2
d
Klm(Xld −Xmd) otherwise

. (4.35)

We obtain two things from the minimisation of P with respect to θ and X : the
parameters of the Gaussian Process, and an estimate of the true location of the
inputs of the training data. The model is inferred from the estimated data, and
the estimated data are inferred both from the prior distributions on the inputs
and from the estimated GP model.
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4.3.1.1 An Ideal Example

For convenience, we will refer to our algorithm for training a Gaussian Process
while simultaneously estimating the true locations of the inputs (or cleaning
them) as “cleanGP”. In Fig. 4.4 we illustrate the way our algorithm works. We
generate 20 training points uniformly spaced between -3 and 3. The correspond-
ing outputs are given by f(x)i = sin(xi) and contaminated with a small amount
of Gaussian i.i.d. noise, of standard deviation 10−2. These are the “clean” train-
ing points (blue circles); none of the models actually sees this data. We now
add Gaussian i.i.d. noise to the inputs of the clean training set, of standard de-
viation 1.2 (large, about three times the space between two consecutive inputs,
so that occasionally inputs will be “swapped”) and obtain the green crosses,
which are the “noisy inputs training data”. We train a standard Gaussian Pro-
cess on the noisy inputs data and make predictions on the clean inputs (mean
shown by a green dashed line). We now train our cleanGP on the same noisy
data (green crosses). The red squares in the figure show the “cleaned” data, i.e.
the most likely location under our cleanGP model. (A few points show arrows
between crosses and corresponding squares.) Finally, we also make predictions
with the resulting cleanGP on the original grid of equally spaced clean inputs
(mean shown by a red solid line). The cleanGP has achieved our two goals. One
the one hand it fits a better model (for example, it avoids underestimating the
slopes). On the other hand, it produces an estimate of the “true” location of
each noisy inputs in the training data.

An crucial subtle confession has to be made at this point: as we detail in section
4.3.1.2, to avoid over-fitting the training is done with knowledge of the level of
output noise.

4.3.1.2 Spurious Global Minima in Training

Training GPs with uncertain inputs is unfortunately not as simple as the max-
imisation of the joint posterior over uncertain inputs and hyperparameters that
we have just proposed. In practice, when we pass the expression of the negative
log posterior and its derivatives to a gradient (or conjugate gradient) descent al-
gorithm, the model quickly gets driven to one of very many undesirable spurious
global minima with extremely poor generalisation performance. This behaviour
can be understood by examining the two terms of P . The first term is the nega-
tive log likelihood of the GP given the estimated inputs X ; this term can increase
indefinitely if the estimated inputs are placed so that the GP can exactly fit the
resulting training data, shrinking the estimated output noise variance virtually
to zero. The second term of P is the negative log prior distribution on the
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Figure 4.4: Illustration of how the data are cleaned. The blue circles are the
training data with noiseless inputs. Noise is added to the inputs to produce the
green crosses, which the “input noisy” training data presented to the Gaussian
Process. A standard GP that does not clean the inputs produces an over-smooth
model (green dashed curve). Our algorithm allows the GP to clean the input
data. The red boxes show the estimates of the locations of the “true” inputs.
We have put some arrows in the figure to show where the model has moved
the noisy points. The red solid line shows the curve fitted to the data by the
cleanGP. (The regression curves for both models are the mean of the predictive
distribution where the test inputs are a uniform noiseless grid) An important
detail: we fixed the output noise to its actual value instead of learning it.

inputs. Although this term penalises estimates of the inputs that lie far away
from the observed inputs (means of the priors), it is ultimately no match for the
gain in the GP log likelihood term, unless the input noise is essentially zero. In
short: the GP model desperately tries to attract the inputs to a location where
it can perfectly fit the training data. As one would expect, cleanGP over-fits in
an extreme manner.

Random restarts of the optimisation (with small perturbations of the initialisa-
tion) also show that the final solution is quite variable, even for fixed training
data. Following an EM-like approach, where the GP parameters were optimised
holding the estimated inputs fixed, and then the positions of the inputs were op-
timised fixing the parameters (and so on), exhibited over-fitting far more slowly,
and thus gave us the intuition that the optimisation process was passing near a
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good solution.

One solution we have found to the over-fitting problem is to use an annealing
type of training, where we fix the output noise level to some high value and
optimise the rest of the parameters (i.e. lengthscales of the GP covariance in
θ and the estimated inputs X). We then lower the value of the output noise,
and retrain the rest of the parameters, starting from their previous estimates.
In Fig. 4.5 we illustrate this process, for the “sinc” toy data: we generate 50
uniformly spaced inputs points between -10 and 10. We build the corresponding
outputs as yi = sin(xi)/xi plus a small amount of Gaussian i.i.d. noise, of
standard deviation 10−2. This is the clean training data. To generate the
noisy inputs training data we add noise to the inputs, of standard deviation
1. We build a test set in a similar manner, generating 100 inputs uniformly at
random between -10 and 10, and computing the corresponding outputs. The
test negative log predictive density (or test energy) is represented against the
output noise variance for a given solution. The blue line with dots contains the
trajectory of the solutions obtained when training cleanGP with annealing. The
diamond shows the optimal solution. The red circles show the solutions obtained
when initialising cleanGP at the given level of output noise, keeping that noise
level fixed, and optimising for 20 random initialisations of the remaining GP
parameters. It can be seen that several different solutions are attained when the
noise level diminishes, and that they all generalise very poorly. The green star
is the solution obtained when training a standard Gaussian Process, allowing
for optimisation of all the parameters. We plot its estimate of the output noise
versus its test error. Of course, knowing when to stop the annealing process is
difficult in practice. We have had limited success with monitoring the magnitude
of the gradient with respect to the output noise level, and stopping the annealing
procedure at the minimum of this quantity.

It is not satisfactory to have to know in advance the variance of the output noise
in order to be able to use the cleanGP approach. It would be much preferable
to be able to estimate it. One would hope to be able to improve on the noise
estimates from a standard GP, that in the presence of noise in the inputs would
tend to over-estimate the output noise.

4.3.2 A Stochastic EM Approach

Let us now address the alternative approach to learning GPs with uncertain
inputs, based on MAP estimates of the hyperparameters θ, but integration over
the uncertain inputs X . We explained previously that the difficulty is centred on
maximising the posterior over θ marginalised over the inputs. This maximisation
we said, is equivalent to maximising the marginal likelihood, (4.30), averaged
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Figure 4.5: The blue line with dots represents the annealing trajectory for the
cleanGP. The green star represents the optimal solution obtained for a standard
GP. The red circles represent the solutions obtained for 20 repetitions of training
of a cleanGP with fixed output noise and a random initialisation of the remaining
parameters of the GP.

over the uncertain inputs, that we will call “marginal evidence”. Let us set this
maximisation up in an EM framework. The log marginal evidence is given by:

L = log p(y|θ,Φ) =

∫
p(y, X |θ,Φ) dX

= log

∫
q(X)

p(y, X |θ,Φ)

q(X)
dX

≥
∫
q(X) log

p(y, X |θ,Φ)

q(X)
dX = F(q, θ) ,

(4.36)

where q(X) is an arbitrary distribution of X and we have used Jensen’s inequal-
ity (with the concavity of the logarithm) to produce a lower F(q, θ) to L. We
described EM learning in Sect. 2.2.1, and we refer the reader to that section for
the details. We basically need to iteratively estimate the distribution q(X) for
fixed θ, the E-step, and to estimate θ for a fixed q(X).

The E-step corresponds to minimising the Kullback-Leibler divergence between
q(X) and the posterior on the inputs. We choose to perform a “stochastic”
E-step, where instead of giving a parametric form to q(X), we directly sample
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from the posterior distribution of X . Such posterior is given by:

p(X |y, θ,Φ) ∝ p(y|X, θ) p(X |Φ) , (4.37)

and we notice that it is proportional to the penalised marginal likelihood for
which we just computed the derivatives wrt. X in Sect. 4.3.1. It is therefore
straightforward to sample from this posterior using for instance Hybrid Monte-
Carlo (see for example Neal, 1993), which is the MCMC method we choose to
use for this task.

The M-step corresponds to maximising the average of the joint distribution
p(y, X |θ,Φ) over q(X). Suppose we have obtained a set of samples from the
posterior {Xτ |τ = 1, . . . ,T}. The approximate average over the posterior is
given by:

θ̂ = arg max
θ

1

T

T∑

τ=1

log p(y|Xτ , θ) , (4.38)

where we have omitted the term log p(X |Φ) because it does not depend on θ.
The maximisation in the M-step is also straightforward for us, since for a given
sample from the posterior, log p(y|Xτ , θ) is simply the log evidence, and we
explained in Sect. 3.1 how to compute it and its derivatives wrt. θ. The M-step
implies simply an average of such log evidences and their derivatives.

To illustrate this learning procedure we generate a toy example, based on the toy
“sinc” data described previously in Sect. 4.3.1.2. We train on the noisy input
data with the stochastic EM until the likelihood seems to reach a stationary
region. The results are displayed in Fig. 4.6. In the top panel we represent the
noisy inputs training data with thick black crosses, and their noiseless input
counterparts with thin circles (to give a visual impression of how much the
inputs have been shifted). We take 1000 samples from the posterior on the
uncertain inputs and plot them with gray dots. It is quite interesting to see,
especially around the main lobe of the “sinc” function, how the samples seem
to cover the “right” regions. At the same time the posterior seems to be broad
enough to avoid over-fitting at the M-step. We now take the samples from the
posterior and use them to approximate the intractable integral in (4.29), that
gives us the predictive distribution. We train a standard GP on the noisy input
data, treating the inputs as if they were noiseless, and compute its predictive
distribution. We display the predictive distributions on the bottom panels: on
the right for the standard GP, and on the left for the stochastic EM learning
procedure. We see two things: the standard GP is too smooth, and it has
larger predictive variances than the GP with stochastic EM. The actual standard
deviation of the output noise is 0.05; the standard GP over-estimates it at 0.16,
and the stochastic EM GP makes a quite accurate estimate at 0.06.
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The computational cost of the stochastic EM is quite high. In the E-step, the
covariance matrix needs to be inverted once for every leapfrog step in the Hybrid
Monte-Carlo scheme, for each sample that is drawn. In the M-step, it needs to
be inverted once for each sample from the posterior. This has the effect of
multiplying the already high computational cost of training GPs. Additionally,
the larger the training set and the dimension of the inputs, the more samples
one should take in the E-step. In a nutshell, the stochastic EM approach is
severely limited in practice by its high computational cost, to training sets of a
few hundred cases.

4.3.3 Conclusion

We have discussed the issue of training GPs when the inputs are also con-
taminated with noise, of known Gaussian distribution. We have shown that
it involves an analytically intractable integration. We have presented two pre-
liminary approximations to solving this integral. The first one is based on a
joint maximisation of the joint posterior on uncertain inputs and GP hyper-
parameters. We have shown that it suffers heavily from over-fitting, which is
not surprising given the very large number of degrees of freedom. We have no-
ticed that carefully controlling the value of the output noise, and reducing it in
an annealing procedure allows to overcome the over-fitting problem. However,
there does not seem to be any obvious stopping criterion for the annealing. We
therefore need to know the actual output noise, which is a serious limitation.
To overcome this limitation, we have proposed to sample from the posterior
distribution on the inputs instead of optimising, and to still maximise with re-
spect to the hyperparameters. The procedure can be naturally formulated as
a stochastic EM algorithm, where in the E-step we sample from the posterior
on the inputs, and in the M-step we maximise the average of the usual GP log
evidence evaluated at the samples from the posterior. In preliminary toy exper-
iments, the method seems promising: it quite well estimates the output noise,
and seems to reach sensible posterior distributions on the inputs. Its practical
use is however limited by its high computational cost. Future work will involve
the use of variational methods, of the guise used in Sect. 2.2.2, to avoid having
to use MCMC methods.
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Figure 4.6: Stochastic EM for learning GPs on noisy inputs in action. Top panel:
the circles show the training data with noiseless inputs, and the crosses that data
after adding noise to the inputs. The models are trained on the crosses. The
gray dots are samples from the posterior distribution over the uncertain inputs.
Bottom: the dashed lines are the means, and the shaded areas represent the 95%
confidence intervals of the predictive distributions for a standard GP (left) and
for a GP trained with the stochastic EM (right). The standard GP ignores the
randomness of the inputs, produces over-smooth predictions and over-estimates
the output noise.
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Chapter 5

Discussion

In this thesis we have first studied Relevance Vector Machines (RVMs). We have
seen that sparseness does not arise from a Bayesian treatment, but rather from
an approximation to it. We maintain the view that full Bayesian approaches
do not yield sparse solutions, since it is hard to conceive a prior that would im-
ply posteriors with exactly zero probability mass on regions where some of the
model weights are non-zero. Approximate Bayesian treatments imply choosing
“convenience” priors, that rather than expressing our genuine beliefs about how
the functions should look like, are simply chosen because of analytical reasons,
and because like for the RVM, they happen to enforce the desired sparseness.
We have shown that for the RVM, and also for the Reduced Rank Gaussian
Process (RRGP), these “convenience” priors correspond to counterintuitive as-
sumptions about the functions. These in turn result in inappropriate predictive
variances, that for instance are larger the closer to the training data, and smaller
as we move away from it. We believe that one important justification for us-
ing a probabilistic, or a Bayesian framework is precisely to obtain probabilistic
predictions. If the predictive distributions have inappropriate predictive vari-
ances, the probabilistic nature of predictions becomes useless. This fact has
motivated us to slightly modify the posterior at prediction time, to include an
additional basis function centred at the test inputs. This increases somewhat
the computational cost of making predictions, but guarantees appropriate pre-
dictive variances, while being still much cheaper than the non-sparse model.
For RVMs, we have also discussed the difficulty of simultaneously learning the
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parameters of the basis functions and the hyperparameters of the prior on the
weights. It is interesting to note that this difficulty is shared by RRGPs, where
selecting the support set and learning the covariance hyperparameters is chal-
lenging and may lead to over-fitting. This difficulty is in contrast on the one
hand with learning GPs by maximising the evidence, where there is no sparsity,
and the hyperparameters can be learned, and on the other hand with the RVM
with fixed basis functions, where the lengthscales are fixed but a support set
of inputs can be learned. It will be interesting to investigate frameworks that
allow learning both support sets and parameters of the basis functions.

For the RVM, we have presented a very simple and computationally efficient in-
cremental approach to training, the Subspace EM (SSEM) algorithm. Although
we have mentioned our awareness of the existence of two other approaches, that
of Tipping and Faul (2003), and that of D’Souza et al. (2004), we have not com-
pared them to our method. It will be interesting to do so, from the theoretical
but also from the practical point of view. The situation is similar for sparse
GPs. We have mentioned a relatively extensive list of recent methods that have
been proposed to increase the computational efficiency of GPs, but we have only
compared our RRGP method based on the evidence to the method of Smola
and Bartlett (2001). We are currently working on a theoretical survey of the
proposed methods, with the intention of categorising the different sparseness
paradigms. Future work will also include an extensive experimental comparison
of the methods. Probably because the RVM is not primarily a sparse approx-
imation to a GP, a thorough experimental comparison of both models seems
to still be lacking in the literature. We have systematically found in our infor-
mal experiments, and in those presented in Sect. 2.5, that GPs were superior
to RVMs. Future could involve a more exhaustive experimental comparison of
both models.

We have successfully addressed the issue of predicting at an uncertain input
with GPs and RVMs, and used this to propagate the uncertainty in recursive
time-series predictions. This has allowed us to obtain sensible predictive vari-
ances when recursively predicting k-steps ahead, where näıve approaches are
extremely over confident. Our propagation of uncertainty method has been suc-
cessfully used by Rasmussen and Kuss (2004) in reinforcement learning. We
have attempted to go beyond uncertainty at test inputs, and tried to solve the
problem of training GPs on uncertain inputs. This has proven to be a much
harder task. Our first approach consisted in imputing the “true” unseen inputs
while learning the model hyperparameters. Though imputation might be inter-
esting in its own right, as one would expect this setting can lead to extreme
over-fitting if not used with much care. We had to resort to an annealing proce-
dure of the output noise, which ultimately had to be known in advance. This is
disappointing, and imposes a serious limitation on the usability of the method.
The second approach we proposed gave promising results, allowing to learn the
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output noise and the covariance hyperparameters, while approximating the pos-
terior distribution on the uncertain weights by sampling from it. Unfortunately
having to sample dramatically increases the computational cost, limiting again
the cases where the method can be used in practice. The results presented on
the issue of training with uncertain inputs are nonetheless quite preliminary,
and we feel that there is still a lot to be investigated. In particular, one should
try approximating the posterior over uncertain inputs by means of variational
approximations, to avoid having to sample. Conversely, one may want to study
efficient sampling schemes, and sample not only over the inputs, but also over
the hyperparameters.
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Appendix A

Useful Algebra

A.1 Matrix Identities

The matrix inversion lemma, also known as the Woodbury, Sherman & Morrison
formula states that:

(Z + UWV >)−1 = Z−1 − Z−1U(W−1 + V >Z−1U)−1V >Z−1, (A.1)

assuming the relevant inverses all exist. Here Z is n×n,W is m×m and U and V
are both of size n×m; consequently if Z−1 is known, and a low rank (ie. m < n)
perturbation are made to Z as in left hand side of eq. (A.1), considerable speedup
can be achieved. A similar equation exists for determinants:

|Z + UWV >| = |Z| |W | |W−1 + V >Z−1U | . (A.2)

Let the symmetric n× n matrix A and its inverse A−1 be partitioned into:

A =

(
P Q
QT S

)
, A−1 =

(
P̃ Q̃

Q̃T S̃

)
, (A.3)

where P and P̃ are n1 × n1 matrices and S and S̃ are n2 × n2 matrices with
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n = n1 + n2. The sub-matrices in A−1 are given in Press et al. (1992, p. 77):

P̃ = P−1 + P−1QM−1QTP−1,

Q̃ = −P−1QM−1, where M = S −QTP−1Q

S̃ = M−1 .

(A.4)

There are also equivalent formulae

P̃ = N−1,

Q̃ = −N−1QS−1, where N = P −QS−1QT

S̃ = S−1 + S−1QTN−1QS−1 .

(A.5)

A.2 Product of Gaussians

When using linear models with Gaussian priors, the likelihood and the prior are
both Gaussian. Their product is proportional to the posterior (also Gaussian),
and their integral is equal to the marginal likelihood (or evidence). Consider
the random vector x of size n× 1 and the following product:

N (x|a, A)N (P x|b, B) = zcN (x|c, C) , (A.6)

where N (x|a, A) denotes the probability of x under a Gaussian distribution
centered on a (of size n× 1) and with covariance matrix A (of size n× n). P is
a matrix of size n ×m and vectors b and c are of size m × 1, and matrices B
and C of size m ×m. The product of two Gaussians is proportional to a new
Gaussian with covariance and mean given by:

C =
(
A−1 + P B−1P>

)−1
, c = C

(
A−1a + P B b

)
.

The normalizing constant zc is gaussian in the means a and b of the two Gaus-
sians that form the product on the right side of (A.6):

zc = (2π)−
m
2 |B + P>AP |− 1

2

× exp

(
−1

2
(b− P a)>

(
B + P>AP

)−1
(b− P a)

)
.
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A.3 Incremental Cholesky Factorisation

Consider the quadratic form:

Q(α) = −v>α+
1

2
α>Aα , (A.7)

where A is a symmetric positive definite matrix of size n×n and v is a vector of
size n× 1. Suppose we have already obtained the minimum and the minimizer
of Q(α), given by:

Qopt = −1

2
v>A−1 v , αopt = A−1 v . (A.8)

We now want to minimize an augmented quadratic form Qi(α), where α is now
of size n × 1 and A and v are replaced by Ai and vi of size n + 1× n+ 1 and
n+ 1× 1 respectively, given by:

Ai =

[
A bi
b>i ci

]
, vi =

[
v
vi

]
.

Assume that vector bi of size n×1 and scalars ci and vi are somehow obtained.
We want to exploit the incremental nature of Ai and vi to reduce the number
of operations necessary to minimize Qi(α). One option would be to compute
A−1
i using inversion by partitioning, with cost O

(
(n+ 1)2

)
if A−1 is known.

For iterated incremental computations, using the Cholesky decomposition of Ai
is numerically more stable. Knowing L, the Cholesky decomposition of A, the
Cholesky decomposition Li of Ai can be computed as:

Li =

[
L 0
z>i di

]
, L zi = bi, d2

i = ci − z>i zi . (A.9)

The computational cost is O(n2/2), corresponding to the computation of zi by
back-substitution. Qmini can be computed as:

Qmini = Qmin − 1

2
u2
i , ui =

1

di
(vi − z>i u) , Lu = v , (A.10)

and the minimizer αopt is given by:

L>αopt = ui , ui =

[
u
ui

]
. (A.11)

Notice that knowing u from the previous iteration, computing Qmini has a cost
of O(n). This is interesting if many different i’s need to be explored, for which
only the minimum of Qi is of interest, and not the minimizer. Once the optimal
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i has been found, computing the minimizer αopt requires a back-substitution,
with a cost of O(n2/2).

It is interesting to notice that as a result of computing Li one obtains “for free”
the determinant of Ai (an additional cost of O(m) to th eO(nm) cost of the
incremental Cholesky). In Sect. A.4 we give a general expression of incremental
determinants.

A.4 Incremental Determinant

Consider a square matrix Ai that has a row and a column more than square
matrix A of size n× n:

Ai =

[
A bi
c>i di

]
. (A.12)

The determinant of Ai is given by

|Ai| = |A| · (di − b>i A
−1ci) . (A.13)

In the interesting situation where A−1 is known, the new determinant is com-
puted at a cost of O(m2).

A.5 Derivation of (3.29)

We give here details of the needed algebra for computing the predictive distri-
bution of the Reduced Rank Gaussian Process. Recall that at training time we
use a finite linear model approximation, with less weights than training inputs.
Each weight has an associated support input possibly selected from the training
inputs. The linear model and prior on the weights are:

[
f
f∗

]
= Φnm ·

[
α
α∗

]
, p

([
α
α∗

]∣∣∣∣x∗, X, θ
)
∼ N

(
0, A−1

)
.

where we have defined

Φnm =

[
Knm k∗

k(x∗)> k∗∗

]
, A =

[
Kmm k(x∗)

k(x∗)> k∗∗

]
. (A.14)

The induced prior over functions is Gaussian with mean zero and covariance
matrix C:

p

([
f
f∗

]∣∣∣∣x∗, X, θ
)
∼ N (0, C) , C = ΦnmA

−1 Φ>nm . (A.15)
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We use inversion by partitioning to compute A−1:

A−1 =

[
K−1
mm + K−1

mmk(x∗) k(x∗)>K−1
mm −K−1

mmk(x∗)/c∗
−k(x∗)>K−1

mm/c∗ 1/c∗

]
,

c∗ = k∗∗ − k(x∗)
>K−1

mmk(x∗) ,

which allows to obtain C:

C =

[
Cnn k∗
k>∗ k∗∗

]
, Cnn ≡Knm K−1

mm K>nm + v∗v
>
∗ /c∗ , (A.16)

where v∗ ≡ k∗ −Knm K−1
mm k(x∗). We can now compute the distribution of f∗

conditioned f :

p(f∗|f ,x∗, X, θ) ∼ N
(
k>∗ C

−1
nn f , k∗∗ − k>∗ C

−1
nnk∗

)
. (A.17)

The predictive distribution, obtained as in (3.5), is Gaussian with mean and
variance given by (3.29). We repeat their expressions here for convenience:

m∗(x∗) = k>∗
[
Knm K−1

mm K>nm + σ2 I + v∗v
>
∗ /c∗

]−1
y ,

v∗(x∗) = σ2 + k∗∗ + k>∗
[
Knm K−1

mm K>nm + σ2 I + v∗v
>
∗ /c∗

]−1
k∗ .

A.6 Matlab Code for the RRGP

We believe that one very exciting part of looking at a new algorithm is “trying it
out”! We would like the interested reader to be able to train our Reduced Rank
Gaussian Process (RRGP) algorithm. Training consists in finding the value of
the hyperparameters that minimizes the negative log evidence of the RRGP (we
give it in Sect. 3.3.1). To do this we first need to be able to compute the negative
log evidence and its derivatives with respect to the hyperparameters. Then we
can plug this to a gradient descent algorithm to perform the actual learning.

We give a Matlab function, rrgp nle, that computes the negative log evidence of
the RRGP and its derivatives for the squared exponential covariance function
(given in (3.1)). The hyperparameters of the squared exponential covariance
function are all positive. To be able to use unconstrained optimization, we
optimize with respect to the logarithm of the hyperparameters.

An auxiliary Matlab function sq dist is needed to compute squared distances.
Given to input matrices of sizes d × n and d × m, the function returns the
n×m matrix of squared distances between all pairs of columns from the inputs
matrices. The authors would be happy to provide their own Matlab MEX
implementation of this function upon request.
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A.6.1 Inputs to the Function rrgp nle:

• X: D+2×1 vector of log hyperparameters, X = [log θ1, . . . log θD+1, logσ]>,
see (3.1)

• input: n×D matrix of training inputs

• target: n× 1 matrix of training targets

• m: scalar, size of the support set

A.6.2 Outputs of the Function rrgp nle:

• f: scalar, evaluation of the negative log evidence at X

• f: D + 2 × 1 vector of derivatives of the negative log evidence evaluated
at X

A.6.3 Matlab Code of the Function rrgp nle:

function [f,df] = rrgp_nle(X,input,target,m)

% number of examples and dimension of input space

[n, D] = size(input);

input = input ./ repmat(exp(X(1:D))’,n,1);

% write the noise-free covariance of size n x m

Knm = exp(2*X(D+1))*exp(-0.5*sq_dist(input’,input(1:m,:)’));

% add little jitter to Kmm part

Knm(1:m,:) = Knm(1:m,:)+1e-8*eye(m);

Cnm = Knm/Knm(1:m,:);

Smm = Knm’*Cnm + exp(2*X(D+2))*eye(m);

Pnm = Cnm/Smm;

wm = Pnm’*target;

% compute function evaluation

invQt = (target-Pnm*(Knm’*target))/exp(2*X(D+2));

logdetQ = (n-m)*2*X(D+2) + sum(log(abs(diag(lu(Smm)))));

f = 0.5*logdetQ + 0.5*target’*invQt + 0.5*n*log(2*pi);

% compute derivatives
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df = zeros(D+2,1);

for d=1:D

Vnm = -sq_dist(input(:,d)’,input(1:m,d)’).*Knm;

df(d) = (invQt’*Vnm)*wm - 0.5*wm’*Vnm(1:m,:)*wm+...

-sum(sum(Vnm.*Pnm))+0.5*sum(sum((Cnm*Vnm(1:m,:)).*Pnm));

end

aux = sum(sum(Pnm.*Knm));

df(D+1) = -(invQt’*Knm)*wm+aux;

df(D+2) = (n-aux) - exp(2*X(D+2))*invQt’*invQt;
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ABSTRACT

The Relevance Vector Machine (RVM) introduced by
Tipping is a probabilistic model similar to the widespread
Support Vector Machines (SVM), but where the training
takes place in a Bayesian framework, and where predic-
tive distributions of the outputs instead of point estimates
are obtained. In this paper we focus on the use of RVM’s
for regression. We modify this method for training gene-
ralized linear models by adapting automatically the width
of the basis functions to the optimal for the data at hand.
Our Adaptive RVM is tried for prediction on the chaotic
Mackey-Glass time series. Much superior performance than
with the standard RVM and than with other methods like
neural networks and local linear models is obtained.

1. INTRODUCTION

Generalized linear models perform a nonlinear projection of
the input space into a transformed space by means of a set
of nonlinear basis functions. A pure linear model is then
applied to the transformed space, whose dimension is equal
to the number of nonlinear basis functions. Given an input� , the output of the generalized linear model is given by

��� �����
	�� ���� ����� � ����� ��� (1)

where � ����� are the nonlinear basis functions and � � ��� are
the model ‘weights’. Unlike in the Support Vector Machines
(SVM) framework where the basis functions must satisfy
Mercer’s kernel theorem, in the RVM case there is no re-
striction on the basis functions [1, 2]. In our case, the basis
functions are chosen as Gaussians centered on each of the
training points. The model we use can be seen as a particu-
lar case of a single hidden layer RBF network with Gaussian
radial basis functions centered on the training points.

This work is funded by the EU Multi-Agent Control Research Training
Network - EC TMR grant HPRNCT-1999-00107.

Like SVM’s, RVM’s yield a sparse solution, i.e., the
model is built on a few ‘key’ training vectors only (like a
pruned version of the particular RBF network). But as in
the SVM case, no optimization of the basis functions is per-
formed along with the training of the model weights. We
propose a modification of the RVM algorithm that includes
the optimization of the basis functions, in particular of the
variance of the Gaussian functions that we use. We will
show that our Adaptive RVM allows the model to be virtu-
ally non-parametric, while the performance of basic RVM’s
depends dramatically on a good choice of the parameters of
the basis functions.

In the next section, we summarize the Bayesian frame-
work used to train RVM’s, and in Section 3 we highlight the
importance of adapting the basis functions and present our
improvement to the RVM. Finally, we compare the Adap-
tive RVM algorithm with other methods for predicting the
Mackey-Glass chaotic time series.

2. THE RELEVANCE VECTOR MACHINE

Once the basis functions of the model described in equa-
tion (1) are defined, a maximum likelihood approach like
the normal equations could be used for training the model
weights � � ��� . Training such a flexible linear model, with as
many parameters (weights) as training examples using max-
imum likelihood leads to over-fitting. Generalization capa-
bility can be pursued by doing the training in a Bayesian
framework.

Rather than attempting to make point predictions of the
optimal value of the model weight parameters, a prior dis-
tribution is defined over each of the weights. In the RVM
framework, Gaussian prior distributions are chosen:

��� � ��� ��� ���! ���"$#&%('*),+�-/." ��� ��0��1 (2)

where � � is the hyperparameter that governs the prior de-
fined over the weight � � .Given a set of input-target training pairs �32�4 5 6 4 ��74 �� , as-
suming that the targets are independent and that the noise of
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the data is Gaussian with variance � � , the likelihood of the
training set can be written as

��� ��� � � �
	 � ������ ��� � ��������� ����� �"!�#%$� � �'& � #)(( ( � �� & ��* (3)

where �  � + ,�	�-�-�-.	 + � � / , � � �  � �0,�	�-�-�-�	 � � � / and 1 is a
matrix whose rows contain the response of all basis func-
tions to the inputs � ( ( ( � 2 3 4576 $ 	.89,:� ; 2 � 	�-�-�-�	.8 � � ; 2 � < .

With the prior and the likelihood distributions, the pos-
terior distribution over the weights can be computed using
Bayes rule

��� � � �=� ��	 > > >0	 � �:�0 ��� � � � � �?	 � � � ��� � � �=� > > > ���� � � > > >0	 � � � (4)

where > > >  � >9@�	�-�-�-�	 > � � / . The resulting posterior distri-
bution over the weights is the multi-variate Gaussian distri-
bution ��� � � �=� ��	 > > >0	 � �:�0BA � C C C�	 D D D � (5)

where the covariance and the mean are respectively given
by: D D D  � � � � ( ( ( / ( ( ()EGF � � ,

(6)C C C  � � � D D D ( (( / � (7)

with
F IH J K�L � >M@�	�-�-�-�	.> � � .

The likelihood distribution over the training targets, given
by equation (3), can be “marginalized” by integrating out
the weights:

��� � � > > >�	 � ���0ON ��� � � � � �
	 � ��� ��� � � �=� > > > �5P � � � (8)

to obtain the marginal likelihood for the hyperparameters:��� � � > > >0	 � � �0BA � Q5	.R �
(9)

where the covariance is given by R  � ��S E)(((TF � , ( ( ( /
.

In the RVM scheme, the estimated value of the model
weights is given by the mean of the posterior distribution
(5), which is also the maximum a posteriori (MP) estimate
of the weights. The MP estimate of the weights depends
on the value of the hyperparameters > > > and of the noise � � .
The estimate of these two variables U> > > and U� � is obtained by
maximizing the marginal likelihood (9).

The uncertainty about the optimal value of the weights
reflected by the posterior distribution (5) is used to express
uncertainty about the predictions made by the model. Given
a new input ;�V , the probability distribution of the corres-
ponding output is given by the predictive distribution��� + V � ;�V:	 U> > >�	 U� ���0N ��� + V � ; V 	 � � �T	 U� �:� ��� � � �=� ��	 U> > >0	 U� ���5P � � � (10)
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Fig. 1. Relevance Vectors chosen from the training set to
build a generalized linear model for prediction.

which has the Gaussian form��� + V�� ;�V:	 U> > >0	 U� � ��WA � X�V�	 � �V � (11)

where the mean and the variance (uncertainty) of the pre-
diction are respectivelyX V  � ( ( ( � 2 3 4 C C C (12)� �V  U� � E � ( ( ( � 2 3 4 D D D"� ( ( ( � /2 3 4 (13)

The maximization of the marginal likelihood (9) with
respect to > > > and � � is performed iteratively, as there is no
closed solution [1]. In practice, during the iterative re-estimation
many of the hyperparameters >MY approach infinity, yield-
ing a posterior distribution (5) of the corresponding weight� Y that tends to be a delta function centered around zero.
The corresponding weight is thus deleted from the model,
as well as its associated basis function 8�Y�� ; � . In the RVM
framework, each basis function 8 Y � ; � is associated to (or
centered around) a training example ;9Y so that 85Y�� ; ��[Z � ;�Y�	 ; � .
The model is built on the few training examples whose asso-
ciated hyperparameters do not go to infinity during the train-
ing process, leading to a sparse solution. These remaining
examples are called the Relevance Vectors (RV).

We here want to examine the RVM approach for time
series prediction. We choose a hard prediction problem,
the MacKey-Glass chaotic time series, which is well-known
for its strong non-linearity. Optimized non-linear models
can have a prediction error which is three orders of mag-
nitude lower than an optimized linear model [3]. Figure 1
shows a piece of the chaotic time series and we have fur-
thermore marked the training targets associated to the RV’s
extracted from a training set composed by \ Q�Q samples of
the Mackey-Glass chaotic time series.
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Fig. 2. Prediction mean square error with and without
adapting the variance of the basis functions.

The Mackey-Glass attractor is a non-linear chaotic sys-
tem described by the following equation:

����� � �
���	��
� ��� � �����

��� � 
�� �� ����� � 
�� � � � (14)

where the constants are set to
� ����� � , ������� � and ��� ��� .

The series is resampled with period
�

according to stan-
dard practice. The inputs are formed by  � �"!

samples
spaced 6 periods from each other #%$ �'& ��� ( 
 ! �*)*��� ( 
� � �+) �,�+� )*��� ( 
 !  � - and the targets are chosen to be

� $.���� (/�
to perform six steps ahead prediction [3].

The standard RVM approach is used, with Gaussian ba-
sis functions of fixed variance 0/1 ��2 .

3. ADAPTING THE BASIS FUNCTIONS

In the training process of a generalized linear model (1)
under the RVM scheme described in the previous section,
only the weights and hyperparameters are optimized. It is
assumed that the basis functions are given. Yet the perfor-
mance of the model depends dramatically on the choice of
the basis functions and the value of their parameters. In the
work presented in this paper the basis functions are isotropic
Gaussian functions of the same variance, one centered on
each training point. The variance is held constant in the
conventional RVM approach, while we optimize it in the
Adaptive RVM.

The importance of the kernel width parameter is illus-
trated in Figure 2. We build a generalized linear model (1),
that we train using both the conventional RVM scheme, and
our adaptive version of it for a time series prediction prob-
lem. We here use 700 training examples, and a large set
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Fig. 3. Number of RV’s selected with and without adapting
the basis functions with respect to their initial width.

of 8500 test examples to monitor performance. The upper
curve in Figure 2 shows the mean square error obtained by
training the RVM for a set of increasing widths of the basis
functions. Each experiment is repeated 10 times: average
values are represented. We note that the performance heavi-
ly depends on the width of the basis functions. The simi-
lar experiment using the adaptive scheme, described below,
where the variance is optimized from variable initial values,
systematically improves performance relative to the fixed
variance case.

For a given number of training examples, the number of
RV chosen depends on the variance of the basis functions.
Figure 3 shows the number of RV’s chosen as a function of
the initial variance both for the conventional and the adap-
tive approaches. Our adaptive approach selects the number
of RV’s that allows the best performance, independently of
the initial value of the basis functions’ variance.

The RVM method iteratively maximizes the marginal
likelihood (9) with respect to the hyper-parameters 3 3 3 and
to the noise 4 1 . We can re-write the marginal likelihood to
explicitly condition it on the variance 0/1 of the Gaussian
basis functions

5 � 6�7 3 3 3 ) 4 1 ) 0 1 � ��8 � � ) 4:9<; ��===?>.@�A"== =CBD� (15)

which depends on 0 1 through the basis functions matrix
= = =

.
In our approach, we maximize (15) with respect to 0�1 at

each iteration. This is done by maximizing the logarithm of
the marginal likelihood. As the width of the basis functions
is equal for all, we have to solve a 1D search problem. Eval-
uating the derivative of the logarithm of (15) with respect to
0/1 is computationally much more expensive than just eval-
uating the marginal likelihood, hence we decided to use a
direct search method due to Hooke and Jeeves [4].
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Fig. 4. Prediction mean square error as a function of the
number of training examples, for a big and a small value of
the variance for the conventional RVM and for the Adaptive
RVM.

From Figure 2 it appears clearly that for a given number
of training examples, there exists an optimal value the basis
function width � � . But this optimal value depends on the
number of training examples, as can be seen from Figure 4.
While the conventional RVM performs well for the number
of training examples that suits it’s fixed � � , our approach
adapts � � to an optimal value. Figure 5 illustrates how the
optimal value of � � decreases for larger training sets, the
number of RV’s was also found to increase (data not shown).

Train Test
Simple linear model

��� ���	��
� � ��� ������
�� �
5 nearest-neighbors � � ���	��
��� ��� � ����
����
Pruned network � � ���	��
 ��� � � � ����
 ���
Adaptive RVM � � � ����
 ��� � � � ����
 ���

Table 1. Training and test mean square prediction error for
the Mackey-Glass chaotic time series.

We compare our Adaptive RVM with a simple linear
model, with a 5 nearest-neighbors local linear model and
with the pruned neural network used in [3] for 6 steps ahead
prediction. The training set contains 1000 examples, and the
test set 8500 examples. Average values of 10 repetitions are
presented. The Adaptive RVM uses an average of 108 RV’s
in this example. It is remarkable that the Adaptive RVM
so clearly outperforms a carefully optimized MLP, we cur-
rently investigate other time series prediction problems in
order to test the hypothesis that highly non-linear problems
are better modeled by non-parametric models with Bayesian
complexity control.
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Fig. 5. Value of the variance � � chosen by the Adaptive
RVM for different numbers of training examples.

4. CONCLUSIONS

Sparse generalized linear models like the RVM (and SVM’s)
present excellent performance on time series prediction, but
are severely limited by the manual choice of the parame-
ters of the basis functions. To overcome this limitation, we
propose the Adaptive RVM that automatically optimizes the
parameters of the basis functions. The resulting time series
predictor outperforms a carefully optimized artificial neural
network. The approach can be generalized to locally adapt
the kernel widths yielding an even more flexible predictor,
however, optimization then becomes non-trivial.
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Incremental Gaussian
Processes

In Becker, S., Thrun, S., and Obermayer, L., editors, Advances in Neural Infor-
mation Processing Systems 15, pages 1001–1008, Cambridge, Massachussetts.
MIT Press.

In Sect. 2.4 we have extended the algorithmic analysis of the incremental method,
and we have proposed to fix the size of the active set.
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Abstract

In this paper, we consider Tipping’s relevance vector machine (RVM)
[1] and formalize an incremental training strategy as a variant of the
expectation-maximization (EM) algorithm that we call subspace EM.
Working with a subset of active basis functions, the sparsity of the RVM
solution will ensure that the number of basis functions and thereby the
computational complexity is kept low. We also introduce a mean field
approach to the intractable classification model that is expected to give
a very good approximation to exact Bayesian inference and contains the
Laplace approximation as a special case. We test the algorithms on two
large data sets with ��� �����	�
������ examples. The results indicate that
Bayesian learning of large data sets, e.g. the MNIST database is realistic.

1 Introduction

Tipping’s relevance vector machine (RVM) both achieves a sparse solution like the support
vector machine (SVM) [2, 3] and the probabilistic predictions of Bayesian kernel machines
based upon a Gaussian process (GP) priors over functions [4, 5, 6, 7, 8]. Sparsity is in-
teresting both with respect to fast training and predictions and ease of interpretation of the
solution. Probabilistic predictions are desirable because inference is most naturally for-
mulated in terms of probability theory, i.e. we can manipulate probabilities through Bayes
theorem, reject uncertain predictions, etc.

It seems that Tipping’s relevance vector machine takes the best of both worlds. It is a GP
with a covariance matrix spanned by a small number of basis functions making the compu-
tational expensive matrix inversion operation go from ��� � �  , where � is the number of
training examples to ��� ������ ( � being the number of basis functions). Simulation stud-
ies have shown very sparse solutions ����� and good test performance [1]. However,
starting the RVM learning with as many basis functions as examples, i.e. one basis function
in each training input point, leads to the same complexity as for Gaussian processes (GP)
since in the initial step no basis functions are removed. That lead Tipping to suggest in
an appendix in Ref. [1] an incremental learning strategy that starts with only a single basis
function and adds basis functions along the iterations. The total number of basis functions
is kept low because basis functions are also removed. In this paper we formalize this strat-
egy using straightforward expectation-maximization (EM) [9] arguments to prove that the
scheme is the guaranteed convergence to a local maximum of the likelihood of the model
parameters.
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Reducing the computational burden of Bayesian kernel learning is a subject of current
interest. This can be achieved by numerical approximations to matrix inversion [10] and
suboptimal projections onto finite subspaces of basis functions without having an explicit
parametric form of such basis functions [11, 12]. Using mixtures of GPs [13, 14] to make
the kernel function input dependent is also a promising technique. None of the Bayesian
methods can currently compete in terms of speed with the efficient SVM optimization
schemes that have been developed, see e.g. [3].

The rest of the paper is organized as follows: In section 2 we present the extended linear
models in a Bayesian perspective, the regression model and the standard EM approach.
In section 3, a variation of the EM algorithm, that we call the Subspace EM (SSEM) is
introduced that works well with sparse solution models. In section 4, we present the second
main contribution of the paper: a mean field approach to RVM classification. Section
5 gives results for the Mackey-Glass time-series and preliminary results on the MNIST
hand-written digits database. We conclude in section 6.

2 Regression

An extended linear model is build by transforming the input space by an arbitrary set of ba-
sis functions ���������	�
� that performs a non-linear transformation of the � -dimensional
input space. A linear model is applied to the transformed space whose dimension is equal
to the number of basis functions � :�� ��� ��� ��� ����� � � � � ��� ������� ��� � � � � � (1)

where ��� ��� �"!$# � � � ��� �&%(')')'(% � � � ��� � * denotes the + th row of the design matrix � and � � � �� � � %)')'(')% �-, � . is the weights vector. The output of the model is thus a linear superposition
of completely general basis functions. While it is possible to optimize the parameters of
the basis functions for the problem at hand [1, 15], we will in this paper assume that they
are given.

The simplest possible regression learning scenario can be described as follows: a set of/
input-target training pairs 0)1 � % 2 � 3 ,� ��� are assumed to be independent and contaminated

with Gaussian noise of variance 4�5 . The likelihood of the parameters � � � is given by6 � 798 � � � % 4 5 �"�;: <>= 4 5)?>@ , A 5CB(D9EGFCHJI< 4 5�K 7 H � � � � K 5&L (2)

where 7M�N� 2 � %)'(')'(% 2 , � . is the target vector. Regularization is introduced in Bayesian
learning by means of a prior distribution over the weights. In general, the implied prior
over functions is a very complicated distribution. However, choosing a Gaussian prior on
the weights the prior over functions also becomes Gaussian, i.e. a Gaussian process. For
the specific choice of a factorized distribution with variance O @ �� :6 � � � 8 O � �"�$P O �<>= B(D�EQFCHQI< O � � 5� L (3)

the prior over functions 6 � RS8 O O O � is T � U9%(�WV @ � � . � , i.e. a Gaussian process with covariance
function given by X"Y>Z � � � % � � �"� ��[ ��� IO [ � [ � 1 � � � [ � 1�� � (4)

where O O O �\� O�] %)'(')'(% O , � . and V^�`_9a b>cC� O�] %(')'(')% O , � . We can now see how
sparseness in terms of the basis vectors may arise: if O @ �[ �dU the e th basis vector
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������� ���	� 
������������� ���	� 
��� � �
, i.e. the � th column in the design matrix, will not contribute

to the model. Associating a basis function with each input point may thus lead to a model
with a sparse representations in the inputs, i.e. the solution is only spanned by a subset of
all input points. This is exactly the idea behind the relevance vector machine, introduced
by Tipping [16]. We will see in the following how this also leads to a lower computational
complexity than using a regular Gaussian process kernel.

The posterior distribution over the weights–obtained through Bayes rule–is a Gaussian dis-
tribution � � � � ��� ��� � � ���� �!"�# � � �$� � � �%�  !  � � � � ��� � � ��� � �$� � � ���� !  #'&(� �)� * * *���+,

(5)

where
&(� �$� * * *���+,

is a Gaussian distribution with mean
* * *

and covariance
+

evaluated at
�
.

The mean and covariance are given by* * *-#. �/�!0+,� � �
(6)+1#2�  �/�!0� � �43'56�/ �
(7)

The uncertainty about the optimal value of the weights captured by the posterior distribu-
tion (5) can be used to build probabilistic predictions. Given a new input


�7
, the model

gives a Gaussian predictive distribution of the corresponding target 8 7� � 8 7 � 
 7 �$9� � ��� 9 :!��#4; � � 8 7 � 
 7 � � � �<� 9 :!� � � � � �=� �0�	9� � ��� 9 �!�	>��� �?#'&�� 8 7 � @ 7 �� �!7  (8)

where @ 7 #A�6� 
 7 �B�** *
(9) !7 # 9 ! 3C�6� 
 7 �B"+�B0�D� 
 7  �

(10)

For regression it is natural to use
@$7

and
 E7

as the prediction and the error bar on the
prediction respectively. The computational complexity of making predictions is thusF � G !"H 3IG(J�3IG !�K 

, where
G

is the number of selected basis functions (RVs) and
H

is the number of predictions. The two last terms come from the computation of
+

in eq.
(7).

The likelihood distribution over the training targets (2) can be “marginalized” with respect
to the weights to obtain the marginal likelihood, which is also a Gaussian distribution� � �)� � � �L�  ! �#4; � � �$� � � �<�  !  � � � � ��� � � ��	>��� �?#'&�� �$� M$�� !�N 3?�,5 / � � � ��

(11)

Estimating the hyperparameters O ��P0Q and the noise
 !

can be achieved by maximizing
(11). This is naturally carried out in the framework of the expectation-maximization (EM)
algorithm since the sufficient statistics of the weights (that act as hidden variables) are
available for this type of model. In other cases e.g. for adapting the length scale of the
kernel [4], gradient methods have to be used. For regression, the E-step is exact (the lower
bound on the marginal likelihood is made equal to the marginal likelihood) and consists in
estimating the mean and variance (6) and (7) of the posterior distribution of the weights
(5). For classification, the E-step will be approximate. In this paper we present a mean
field approach for obtaining the sufficient statistics.

The M-step corresponds to maximizing the expectation of the log marginal likelihood with
respect to the posterior, with respect to

 !
and
� � �

, which gives the following update rules:��R�S TP # �U V	WX�Y�Z"[ V V V:\ ]�^ _ _ _$^ ` W a # �b Wc d:e X X , and
�  !  R0S Tf# �� � � � �<g?�h*L� � ! 3i�  !  j k lnm P�o P� ,

where the quantity o P �4p�gq� P0rnP P is a measure of how “well-determined” each weight
� P

is by the data [17, 1]. One can obtain a different update rule that gives faster convergence.
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1. Set ������� for all � . ( � is a very large number) Set �	��

2. Update the set of active indexes ��
3. Perform an E-step in subspace � � such that ���	��
4. Perform the M-step for all ��� such that ���	� 
5. If visited all basis functions, end, else go to 2.

Figure 1: Schematics of the SSEM algorithm.

Although it is suboptimal in the EM sense, we have never observed it decrease the lower
bound on the marginal log-likelihood. The rule, derived in [1], is obtained by differentiation
of (11) and by an arbitrary choice of independent terms as is done by [17]. It makes use of
the terms ��� ��� :

� �� �� � � �����
� � ��� �� � �

� �  "!$# � � � �% !$& � � �(' (12)

In the optimization process many � � grow to infinity, which effectively deletes the cor-
responding weight and basis function. Note that the EM update and the Mackay update
for � � only implicitly depend upon the likelihood. This means that it is also valid for the
classification model we shall consider below.

A serious limitation of the EM algorithm and variants for problems of this type is that the
complexity of computing the covariance of the weights (7) in the E-step is ) � *,+.-/* � % � .
At least in the first iteration where no basis functions have been deleted

* � %
and we

are facing the same kind of complexity explosion that limits the applicability of Gaussian
processes to large training set. This has lead Tipping [1] to consider a constructive or
incremental training paradigm where one basis function is added before each E-step and
since basis functions are removed in the M-step, it turns out in practice that the total number
of basis functions and the complexity remain low. In the following section we introduce a
new algorithm that formalizes this procedure that can be proven to increase the marginal
likelihood in each step.

3 Subspace EM

We introduce an incremental approach to the EM algorithm, the Subspace EM (SSEM), that
can be directly applied to training models like the RVM that rely on a linear superposition
of completely general basis functions, both for classification and for regression. Instead of
starting with a full model, i.e. where all the basis functions are present with finite � values,
we start with a fully pruned model with all � � set to infinity. Effectively, we start with no
model. The model is grown by iteratively including some � � previously set to infinity to
the active set of � ’s. The active set at iteration � , �  , contains the indices of the basis
vectors with � less than infinity:

�10"�2

�������3 � 34�(��.5�0762�98;:�� �4< �=� � (13)

where � is a finite very large number arbitrarily defined. Observe that �  contains at most
one more element (index) than �1>5�0 . If some of the � ’s indexed by ��.5�0 happen to reach� at the � -th step, �� can contain less elements than �1>5�0 . In figure 1 we give a schematic
description of the SSEM algorithm.

At iteration � the E-step is taken only in the subspace spanned by the weights whose
indexes are in �  . This helps reducing the computational complexity of the M-step to) � * + � , where

*
is the number of relevance vectors.
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Figure 2: Training on 400 samples of the Mackey-Glass time series, testing on 2000 cases.
Log marginal likelihood as a function of the elapsed CPU time (left) and corresponding
number of relevance vectors (right) for both SSEM and EM.

Since the initial value of ��� is infinity for all � , for regression the E-step yields always
an equality between the log marginal likelihood and its lower bound. At any step � , the
posterior can be exactly projected on to the space spanned by the weights ��� such that���
	�� , because the ������ for all � not in 	�� . Hence in the regression case, the SSEM
never decreases the log marginal likelihood. Figure 2 illustrates the convergence process
of the SSEM algorithm compared to that of the EM algorithm for regression.

Once all the examples have been visited, we switch to the batch EM algorithm on the active
set until some convergence criteria has been satisfied, for example until the relative increase
in the likelihood is smaller than a certain threshold.

4 Classification

Unlike the model discussed above, analytical inference is not possible for classification
models. Here, we will discuss a mean field approach initially proposed for Gaussian pro-
cesses [8] that are readily translated to RVMs. The mean field approach has the appealing
features that it retains the computational efficiency of RVMs, is exact for the regression and
reduces to the Laplace approximation in the limit where all the variability comes from the
prior distribution.

We consider binary ������� classification using the probit likelihood with ’input’ noise ������ ���  � !�" " �$#�% & ' �  � !�"�)(+* (14)

where ,.-
/10325476 8 �:93-<;3= >3? and #@% & � AB" /1C�D25E ,.- is an error function (or cumulative
Gaussian distribution). The advantage of using this sigmoid rather than the commonly
used 0/1-logistic is that we under the mean field approximation can derive an analytical
expression for the predictive distribution ��� �7FG� ! F * H " � C ��� � F3�  " ���  I� ! F * H " 93 needed for
making Bayesian predictions. The central assumption in mean field theory can be boiled
down to saying that ���  �� ! F * H " is approximated by a Gaussian distribution. This leads to
the following approximation for the predictive distribution��� � FG� ! F * H " �$#�% & ' � F  F� F ( (15)
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where the mean and variance of ��� ��� ���
	 �� : ��� and ���� are given by the eqs. (9) and (10).
However, the mean and covariance of the weights are no longer found by analytical expres-
sions, but has to be obtained from a set of non-linear mean field equations that also follow
from equivalent assumptions of Gaussianity for the training set outputs ��� ��� � in averages
over reduced (or cavity) posterior averages.

In the following, we will only state the results which follows from combining the RVM
Gaussian process kernel (4) with the results of [8]. The sufficient statistics of the weights
are written in terms of a set of ��� ��� mean field parameters� � �����������! #"" " (16)$ �&% �(')�  �* �!+ ��� (17)

where " �-,/..0213�4 576 � �98� 	;:<8� ' � � � and

6 � � 8� 	;: 8� ' � � � ,�= ��� > � � � 8� '@?#A : 8� ' � � ��B ?<�DC2E F7G > � � 8�H : 8� ' � �JILK (18)

The last equality holds for the likelihood eq. (14) and � 8� and : 8� are the mean and variance
of the so called cavity field. The mean value is �#8� �M� � � � �ON ��P :!8� " � . The distinction
between the different approximation schemes is solely in the variance :Q8� : :<8� �SR is the
Laplace approximation, :!8� �UT �!� ��� �  WV � � is the so called naive mean field theory and
an improved estimate is available from the adaptive TAP mean field theory [8]. Lastly, the
diagonal matrix * is the equivalent of the noise variance in the regression model (compare
eqs. (17) and (7) and is given by X � �YP .Z 3.0213�[ � \ ' :]8� .Z 3.0213 � . This set of non-linear equations
are readily solved (i.e. fast and stable) by making Newton-Raphson updates in � � � treating
the remaining quantities as help variables:^ � � ��� � _ '@� ��� �  * � � ��� � � ��� �  " " "QP���� � � $ � �  " " "QP`�<��� � (19)

The computational complexity of the E-step for classification is augmented with respect to
the regression case by the fact that it is necessary to construct and invert a acb�a matrix
usually many times (typically 20), once for each step of the iterative Newton method.

5 Simulations

We illustrate the performance of the SSEM for regression on the Mackey-Glass chaotic
time series, which is well-known for its strong non-linearity. Optimized non-linear models
can have a prediction error which is three orders of magnitude lower than an optimized
linear model [18]. In [15] we showed that the RVM has an order of magnitude superior
performance than carefully tuned neural networks for time series prediction on the Mackey-
Glass series. The inputs are formed by d � \
e samples spaced 6 periods from each other��f �hg ? � i P ej�;	 ? � i P \kj�;	 K�K2K 	 ? � i P ejdO� l and the targets are chosen to be > f �m? � iJ� to
perform six steps ahead prediction (see [18] for details). We use Gaussian basis functions
of fixed variance n � � \ R . The test set comprises ojp R
q examples.

We perform prediction experiments for different sizes of the training set. We perform in
each case \ R repetitions with different partitions of the data sets into training and test. We
compare the test error, the number of RVs selected and the computer time needed for the
batch and the SSEM method. We present the results obtained with the growth method
relative to the results obtained with the batch method in figure 3. As expected, the relative
computer time of the growth method compared with the batch method decreases with size
of the training set. For a few thousand examples the SSEM method is an order of magnitude
faster than the batch method. The batch method proved only to be faster for \ RjR training
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Figure 3: Left: Regression, mean values over 10 repetitions of relative test error, number
of RVs and computer time for the Mackey-Glass data, up to 2400 training examples and
5804 test examples. Right: Classification, Log marginal likelihood, test and training errors
while training on one class against all the others, 60000 training and 10000 test examples.

examples, and could not be used with data sets of thousands of examples on the machine on
which we run the experiments because of its high memory requirements. This is the reason
why we only ran the comparison for up to ������� training example for the Mackey-Glass
data set.

To illustrate the performance in classification problems we choose a very large data set, the
MNIST database of handwritten digits [19], with ��������� training and ��������� test images.
The images are of size ��	�
���	 pixels. We use PCA to project them down to ��� dimensional
vectors. We only perform a preliminary experiment consisting of a one against all binary
classification problem to illustrate that Bayesian approaches to classification can be used on
very large data sets with the SSEM algorithm. We train on �����	�� examples (the ������� one’s
and another ������� random non-one digits selected at random from the rest) and we use 	����
basis functions for both the batch and Subspace EM. In figure 3 we show the convergence of
the SSEM in terms of the log marginal likelihood and the training and test probabilities of
error. The test probability of error we obtain is ��� ��� percent with the SSEM algorithm and
��� ��� percent with the batch EM. Under the same conditions the SSEM needed ��� minutes
to do the job, while the batch EM needed ��	�� minutes. The SSEM gives a machine with 28
basis functions and the batch EM one with 31 basis functions. We intend to implement an
RVM for multi-class classification and train it on the whole MNIST dataset with the SSEM
algorithm, which we estimate will take  days in total on a Linux cluster. It is impossible to
do such a thing with the batch EM, except on machines capable of inverting ����������
����������
matrices.

6 Conclusion

We have presented a new approach to Bayesian training of linear models, based on a sub-
space extension of the EM algorithm that we call Subspace EM (SSEM). The new method
iteratively builds models from a potentially big library of basis functions. It is especially
well-suited for models that are constructed such that they yield a sparse solution, i.e. the so-
lution is spanned by small number � of basis functions, which is much smaller than � , the
number of examples. A prime example of this is Tipping’s relevance vector machine that
typically produces solutions that are sparser than those of support vector machines. With
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the SSEM algorithm the computational complexity and memory requirement decrease from��� �����
and

��� �����
to
��� 	
�����

(somewhat higher for classification) and
��� ��	�

. For
classification, we have presented a mean field approach that are expected to be a very good
approximation to the exact inference and contains the widely used Laplace approximation
as an extreme case. We have applied the SSEM algorithm to both a large regression and a
large classification data sets. Although preliminary for the latter, we believe that the results
demonstrate that Bayesian learning is possible for very large data sets. Similar methods
should also be applicable beyond supervised learning.
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Abstract

We consider the problem of multi-step ahead prediction in time series
analysis using the non-parametric Gaussian process model. � -step ahead
forecasting of a discrete-time non-linear dynamic system can be per-
formed by doing repeated one-step ahead predictions. For a state-space
model of the form �������	� ��� 
���������� ��� 
���� , the prediction of � at time��� � is based on the point estimates of the previous outputs. In this pa-
per, we show how, using an analytical Gaussian approximation, we can
formally incorporate the uncertainty about intermediate regressor values,
thus updating the uncertainty on the current prediction.

1 Introduction

One of the main objectives in time series analysis is forecasting and in many real life prob-
lems, one has to predict ahead in time, up to a certain time horizon (sometimes called lead
time or prediction horizon). Furthermore, knowledge of the uncertainty of the prediction is
important. Currently, the multiple-step ahead prediction task is achieved by either explic-
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itly training a direct model to predict � steps ahead, or by doing repeated one-step ahead
predictions up to the desired horizon, which we call the iterative method.

There are a number of reasons why the iterative method might be preferred to the ‘direct’
one. Firstly, the direct method makes predictions for a fixed horizon only, making it com-
putationally demanding if one is interested in different horizons. Furthermore, the larger � ,
the more training data we need in order to achieve a good predictive performance, because
of the larger number of ‘missing’ data between � and ����� . On the other hand, the iterated
method provides any � -step ahead forecast, up to the desired horizon, as well as the joint
probability distribution of the predicted points.

In the Gaussian process modelling approach, one computes predictive distributions whose
means serve as output estimates. Gaussian processes (GPs) for regression have historically
been first introduced by O’Hagan [1] but started being a popular non-parametric modelling
approach after the publication of [7]. In [10], it is shown that GPs can achieve a predic-
tive performance comparable to (if not better than) other modelling approaches like neural
networks or local learning methods. We will show that for a � -step ahead prediction which
ignores the accumulating prediction variance, the model is not conservative enough, with
unrealistically small uncertainty attached to the forecast. An alternative solution is pre-
sented for iterative � -step ahead prediction, with propagation of the prediction uncertainty.

2 Gaussian Process modelling

We briefly recall some fundamentals of Gaussian processes. For a comprehensive intro-
duction, please refer to [5], [11], or the more recent review [12].

2.1 The GP prior model

Formally, the random function, or stochastic process, ��� �
	 is a Gaussian process, with
mean ��� �
	 and covariance function �� ����� �
��	 , if its values at a finite number of points,��� ����	�������������� ����	 , are seen as the components of a normally distributed random vector. If
we further assume that the process is stationary: it has a constant mean and a covariance
function only depending on the distance between the inputs � . For any � , we have��� � � 	�������������� � � 	���� � !���"#	�� (1)

with $ ���&%('*),+ � ��� ���-	�� ��� �
��	 	 % �� �.��� �
��	 giving the covariance between the points��� � � 	 and ��� � � 	 , which is a function of the inputs corresponding to the same cases / and0 . A common choice of covariance function is the Gaussian kernel1

�� � � � � � 	 %21�3�4 5 6879;:<=�> � � � �
= 6 � �= 	 ?@ ?=BA � (2)

where C is the input dimension. The @ parameters (correlation length) allow a different
distance measure for each input dimension D . For a given problem, these parameters will
be adjusted to the data at hand and, for irrelevant inputs, the corresponding @ = will tend to
zero.

The role of the covariance function in the GP framework is similar to that of the kernels
used in the Support Vector Machines community. This particular choice corresponds to a
prior assumption that the underlying function � is smooth and continuous. It accounts for
a high correlation between the outputs of cases with nearby inputs.

1This choice was motivated by the fact that, in [8], we were aiming at unified expressions for the
GPs and the Relevance Vector Machines models which employ such a kernel. More discussion about
possible covariance functions can be found in [5].
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2.2 Predicting with Gaussian Processes

Given this prior on the function � and a set of data �������	� 
 ��� ��� ��� , our aim, in this
Bayesian setting, is to get the predictive distribution of the function value ��� ����� corre-
sponding to a new (given) input � � .
If we assume an additive uncorrelated Gaussian white noise, with variance ��� , relates the
targets (observations) to the function outputs, the distribution over the targets is Gaussian,
with zero mean and covariance matrix such that �������! ����#"$�%��& ��� . We then adjust the
vector of hyperparameters '(�*) + ��,�,�, +.-/� � �%��0 1 so as to maximise the log-likelihood2 � '3�4�65 7�8�9:� ;#< '3� , where = is the vector of observations.

In this framework, for a new �:� , the predictive distribution is simply obtained by condi-
tioning on the training data. The joint distribution of the variables being Gaussian, this
conditional distribution, 9:� ��� ��� � < � � 
 �>� is also Gaussian with mean and variance? � � � �@�BA�� � � � 1DCFE�� ; (3)GIH � � � �@�KJ�� � � �ML*A�� � � � 1 � E�� A�� � � ��
 (4)

where A�� �:���#�N) O>� ���%
 �:���P
 ,�,�, 
 O>� ���%
 ���3� 0 1 is the QSRUT vector of covariances between
the new point and the training targets and J�� �����4�VO>� ���%
 �:���4�WT , with O>� , 
 , � as given by
(2).

The predictive mean serves as a point estimate of the function output, X�:� ����� with uncer-
tainty G � �:��� . And it is also a point estimate for the target, X�I� , with variance G H � ������"Y�%� .
3 Prediction at a random input

If we now assume that the input distribution is Gaussian, ���[ZY\N� ?�]%^ 
�_ ]�^ � , the predictive
distribution is now obtain by integrating over ���9:� ��� � � ��< ?�]�^ 
� ]%^ �4� ` 9:� ��� � � ��< � � 
 �>� 9:� � � � a�� � 
 (5)

where 9:� ��� �:����< �:�%
 �>� is Normal, as specified by (3) and (4).

3.1 Gaussian approximation

Given that this integral is analytically intractable (9:� ��� � � ��< � � � is a complicated function
of ��� ), we opt for an analytical Gaussian approximation and only compute the mean and
variance of 9:� ��� �:����< ?�]�^ 
� ]�^ � . Using the law of iterated expectations and conditional
variance, the ‘new’ mean and variance are given byb � ? ]%^ 
P ]�^ �@�Kc ]�^ ) c.dfe ] ^ g ) ��� � � ��< � � 0 0��Vc ]%^ ) ? � � � � 0 (6)�I� ?�]%^ 
P ]�^ �@�Kc ]�^ ) h%i%j d�e ]�^ g � ��� � � ��< � � � 0k"Yh%i%j ]�^ � c d�e ]�^ g ) ��� � � ��< � � 0 ��Kc ]�^ ) G H � � � � 0	"Yh%i%j ]%^ � ? � � � � � (7)

where c ]�^ indicates the expectation under l�� .
In our initial development, we made additional approximations ([2]). A first and second
order Taylor expansions of ? � � � � and G H � � � � respectively, around ? ]�^ , led tob � ?�]�^ 
� ]�^ �m� ? � ?�]�^ � (8)�I� ?�]�^ 
� ]�^ �m� G H � ?�]�^ ��" Tn�o�j4pFq H G H � � � �q � � q � � 1srrrr t ^ ��u�v ^

_ ]�^kw "xq ? � � � �q � � rrrr
1
t ^ ��u�v ^
_ ]�^ q ? � � � �q � � rrrr t ^ ��u�v ^ ,

(9)
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The detailed calculations can be found in [2].

In [8], we derived the exact expressions of the first and second moments. Rewriting the
predictive mean ��� ����� as a linear combination of the covariance between the new ��� and
the training points (as suggested in [12]), with our choice of covariance function, the cal-
culation of ��� �	��� then involves the product of two Gaussian functions:��� ��
�����
������ � ��� � � � �	� � � � ��� � ������� � ��� � � � � � � � �	� � � � ��� � (10)

with � �"! #�$�% . This leads to (refer to [9] for details)��� � 
� ��� 
�� ���'&)(�� (11)

with *�+,�.- /0#�$213
 �5476 - #�$ 8�9):2;=<?> @ $9 � �A
 � @ �AB � C�� 13
 �D4 /E�2#�$� �A
 � @��A+ � F , where/G�'H=I JKML N 9$ ��O�O2O�� N 9PDQ and 6 is the RTS,R identity matrix.

In the same manner, we obtain for the varianceU � � 
� ��� 
�� ��� � � � 
� � � 
���4WV�X3Y � �A�A( @W! #�$ � Z\[�@ V�X � &)(��A� 9 (12)

withZ5+ � �]- ^�/ #�$ 13
 ��4W6 - #�$ 8�9 :2;=<`_)@ba^ � ��c`@ �A
 � � C ��a^ / 4 13
 � � #�$ � �)c @���
 � � d
:2;e<b_)@ba^ � � B @ �=f � C � ^�/E� #�$ � � B @��=f � d (13)

where �)c��7� � +M4 � � � g^ .
3.2 Monte-Carlo alternative

Equation (5) can be solved by performing a numerical approximation of the integral, using
a simple Monte-Carlo approach:

�	� h�� � � ��- � 
� ��1 
� ��� � �	� h�� � � ��- � � � �	� � � � ��� �ji ak C� l m $ �	� h	� � � ��- � �
l ��� (14)

where �A� l are (independent) samples from �	� �	��� .
4 Iterative n -step ahead prediction of time series

For the multiple-step ahead prediction task of time series, the iterative method con-
sists in making repeated one-step ahead predictions, up to the desired horizon. Con-
sider the time series o l p ��O2O�O2� o l and the state-space model o l q �rh	� s l q � 4�t l q wheres l q �uL o l q #�$���O2O�O2� o l q #)v Q C is the state at time w + (we assume that the lag x is known)
and the (white) noise has variance U�y .
Then, the“naive” iterative z -step ahead prediction method works as follows: it predicts
only one time step ahead, using the estimate of the output of the current prediction, as well
as previous outputs (up to the lag x ), as the input to the prediction of the next time step,
until the prediction z steps ahead is made. That way, only the output estimates are used
and the uncertainty induced by each successive prediction is not accounted for.

Using the results derived in the previous section, we suggest to formally incorporate the
uncertainty information about the intermediate regressor. That is, as we predict ahead in
time, we now view the lagged outputs as random variables. In this framework, the input



126 Appendix D

at time � � is a random vector with mean formed by the predicted means of the lagged
outputs ��� � ���	� , 
������������� � , given by (11). The ����� input covariance matrix has the
different predicted variances on its diagonal (with the estimated noise variance ��� added to
them), computed with (12), and the off-diagonal elements are given by, in the case of the
exact solution, �����	� � �  � ! �  

" �$#�%�& % '�% � ( %*),+.-�/  
"
, where '�% is as defined previously and

( % �102� 3 �.465 %87:9 �.4-�; +*-�; " with 0<�<� 3 �.4 7=9 �.4-�; " �.4 .

4.1 Illustrative examples

The first example is intended to provide a basis for comparing the approximate and exact
solutions, within the Gaussian approximation of (5)), to the numerical solution (Monte-
Carlo sampling from the true distribution), when the uncertainty is propagated as we predict
ahead in time. We use the second example, inspired from real-life problems, to show that
iteratively predicting ahead in time without taking account of the uncertainties induced by
each succesive prediction leads to inaccurate results, with unrealistically small error bars.

We then assess the predictive performance of the different methods by computing the av-
erage absolute error ( � 4 ), the average squared error ( �?> ) and average minus log predictive
density2 ( �A@ ), which measures the density of the actual true test output under the Gaussian
predictive distribution and use its negative log as a measure of loss.

4.1.1 Forecasting the Mackey-Glass time series

The Mackey-Glass chaotic time series constitutes a wellknown benchmark and a challenge
for the multiple-step ahead prediction task, due to its strong non-linearity [4]: B6C�D � EB � �
)GF�H � � " 71I C�D � �	� E4 � C�D � �	� E J K . We have I �ML�� N , F �ML��  and 
O���P . The series is re-sampled
with period  and normalized. We choose �:�$�Q for the number of lagged outputs in the
state vector, 5.R �TS U R �.V �6U R �	W ��������� U R �	X8Y and the targets, � � � H � , are corrupted by a
white noise with variance L�� L�L� .
We train a GP model with a Gaussian kernel such as (2) on �L�L points, taken at random
from a series of Z�L�L�L points. Figure 1 shows the mean predictions with their uncertainties,
given by the exact and approximate methods, and [�L samples from the Monte-Carlo nu-
merical approximation, from \,�� to \,���L�L steps ahead, for different starting points.
Figure 2 shows the plot of the �L�L -step ahead mean predictions (left) and their N�] uncer-
tainties (right), given by the exact and approximate methods, as well as the sample mean
and sample variance obtained with the numerical solution (average over [�L points).

These figures show the better performance of the exact method on the approximate one.
Also, they allow us to validate the Gaussian approximation, noticing that the error bars
encompass the samples from the true distribution. Table 1 provides a quantitative confir-
mation.

Table 1: Average (over [�L�L test points) absolute error ( � 4 ), squared error ( �?> ) and mi-
nus log predictive density ( �?@ ) of the �L�L -step ahead predictions obtained using the exact
method ( ^=4 ), the approximate one ( ^ > ) and the sampling from the true distribution ( ^:@ ).

� 4 �A> � @
^ 4 L�� _�[�P�_ L�� `�`�a�P L�� Z�_�P�`
^ > L�� [�_�L�a L�� _�Q�L�a �� �`�L�L
^b@ L�� _�Z�Z�Q � `�P�Q�[ L�� Z�a�P�a

2To evaluate these losses in the case of Monte-Carlo sampling, we use the sample mean and
sample variance.
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Figure 1: Iterative method in action: simulation from � to ����� steps ahead for different
starting points in the test series. Mean predictions with ��� error bars given by the ex-
act (dash) and approximate (dot) methods. Also plotted, ��� samples obtained using the
numerical approximation.
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Figure 2: ����� -step ahead mean predictions (left) and uncertainties (right.) obtained using
the exact method (dash), the approximate (dot) and the sample mean and variance of the
numerical solution (dash-dot).
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4.1.2 Prediction of a pH process simulation

We now compare the iterative � -step ahead prediction results obtained when propagating
the uncertainty (using the approximate method) and when using the output estimates only
(the naive approach). For doing so, we use the pH neutralisation process benchmark pre-
sented in [3]. The training and test data consist of pH values (outputs � of the process) and
a control input signal ( � ).

With a model of the form �������
	 ��� ������������ ��� ����� ��� ������������ ��� ����� , we train our GP on�������
examples and consider a test set of ��� points (all data have been normalized).

Figure 3 shows the
���

-step ahead predicted means and variances obtained when propagat-
ing the uncertainty and when using information on the past predicted means only. The
losses calculated are the following: � � � � � ��� ��! , �#"$� � � ��% ��& and �('$� � � !������ for the
approximate method and � ' � ��)���� � � for the naive one!
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Figure 3: Predictions from
�

to
���

steps ahead (left).
���

-step ahead mean predictions with
the corresponding variances, when propagating the uncertainty (dot) and when using the
previous point estimates only (dash).

5 Conclusions

We have presented a novel approach which allows us to use knowledge of the variance on
inputs to Gaussian process models to achieve more realistic prediction variance in the case
of noisy inputs.

Iterating this approach allows us to use it as a method for efficient propagation of uncer-
tainty in the multi-step ahead prediction task of non-linear time-series. In experiments on
simulated dynamic systems, comparing our Gaussian approximation to Monte Carlo simu-
lations, we found that the propagation method is comparable to Monte Carlo simulations,
and that both approaches achieved more realistic error bars than a naive approach which
ignores the uncertainty on current state.

This method can help understanding the underlying dynamics of a system, as well as being
useful, for instance, in a model predictive control framework where knowledge of the ac-
curacy of the model predictions over the whole prediction horizon is required (see [6] for a
model predictive control law based on Gaussian processes taking account of the prediction
uncertainty). Note that this method is also useful in its own right in the case of noisy model
inputs, assuming they have a Gaussian distribution.
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In this paper we compare the approximate methods proposed in [D] with the
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ABSTRACT

The object of Bayesian modelling is the predictive distribution,
which in a forecasting scenario enables evaluation of forecasted
values and their uncertainties. In this paper we focus on reliably
estimating the predictive mean and variance of forecasted values
using Bayesian kernel based models such as the Gaussian Process
and the Relevance Vector Machine. We derive novel analytic ex-
pressions for the predictive mean and variance for Gaussian kernel
shapes under the assumption of a Gaussian input distribution in the
static case, and of a recursive Gaussian predictive density in itera-
tive forecasting. The capability of the method is demonstrated for
forecasting of time-series and compared to approximate methods.

1. INTRODUCTION

The problem of nonlinear forecasting is relevant to numerous ap-
plication domains e.g. in financial modelling and control. This
paper focuses on providing better estimates of the forecasted value
as well as its uncertainty. The object of interest in Bayesian mod-
elling framework [1] is the predictive density which contains all
information about the forecasted value given the history of known
values. For many Bayesian models the predictive density can only
be approximated using Monte-Carlo sampling, local expansions,
or variational approaches. However, when using Bayesian Gaus-
sian shaped kernel models such as the Gaussian Process (GP) with
a Gaussian kernel [1, 2] or the Relevance Vector Machine (RVM)
[3, 4] the predictive mean and variance are given by analytic ex-
pressions under mild assumptions. Moreover the Bayesian kernel
methods have proven to be very efficient nonlinear models [2, 4],
with flexible approximation capabilities and high generalization
performance.

We focus on the nonlinear auto-regressive (NAR) model with
Gaussian innovations although more flexible nonlinear time-series
models [5] sometimes are more efficient. Multi-step ahead fore-
casting can be done as direct forecast or as iterative one-step ahead
forecasting. In [6] it is concluded that iterative forecasting usually
is superior to direct forecasting. Generally the complexity of the
nonlinear mapping in direct forecasting increases with the forecast
horizon and for a fixed length time-series the number of training

This work is supported by the Multi-Agent Control Research Train-
ing Network - EC TMR grant HPRN-CT-1999-00107. Roderick Murray-
Smith is acknowledged for useful discussions.

examples decreases with the forecast horizon. In iterative forecast-
ing the complexity of the nonlinear mapping is much lower than
in the direct case, the number of training samples higher, but the
performance is diminished by the uncertainty of the forecasted val-
ues. Consequently the involved effects provide a delicate trade-off.
We restrict this work to iterative forecasting, which offers the ad-
ditional advantage that multi-step ahead forecasts can be obtained
with only one trained model.

In classical iterative forecasting only the predictive mean is it-
erated, here we consider an improvement to the methods suggested
in [7] which iterate both the predictive mean and variance. This
corresponds to using the model in recall/test phase under uncer-
tain input. We do not consider training the model under uncertain
inputs, which has been addressed for nonlinear model in [8] and
for linear models in e.g, [9].

In section 2 we introduce the Bayesian modelling framework.
In section 3 we consider the evaluation of the prediction density
with uncertain inputs, which is formulated for time-series forecast-
ing in section 4. Finally section 5 provides numerical experiments,
that demonstrate the capability of the proposed method.

2. BAYESIAN KERNEL MODELLING

Consider a � -dimensional column input vector � and a single out-
put 	 , then the nonlinear model is defined as1

	�
��� ��������� (1)

where ��� � � is a nonlinear function implemented as a GP or a RVM,
and ������� ��� ��� � is additive i.i.d. Gaussian noise with variance��� . Suppose that the training data set is !"
$#%�'& � 	�& (%)& *�+ , where,

is the number of training samples. When using a GP [1, 2] or a
RVM [3, 4], the predictive distribution of the output, 	 , is Gaussian
[10], - � 	/. �'� !0��
1��� 2�� �'� � � � � ��� � � (2)

where � is an arbitrary input at which we perform prediction. For
a GP the mean and variance of the predictive distribution are given
by

2'� ����
3�45� ��� 6�7 + 8 �9� �:�; � ����
=<�>?3/4@� ��� 6�7 + 3�� ��� � (3)

1We tacitly assume that A has zero mean, although a bias term can be
included, see further [10].
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where ������� �	� 
 ���� is the kernel, which we set to the commonly
used Gaussian form2. We have� ��� � � � 
 � � ����� ����� ��� � � ��� � � ��������� � � � � � � !#"$ 
 (4)�%�'&�( )*+� ,+- � 
 .. .�
 ,�-/�$ 
 (5)0 �%1#2�� �435�61#�����7� �	� 
 ���#��8:9�-;< � �43 (6)= � �����>� � ��� � �?
 � � � 
�@ @�@�
 � ��� � �?
 ��A5� $ ��
 (7)B �>� C � 
�@�@ @�
 C4A�$ ��. (8)

The kernel width hyper-parameters, ,ED , are fitted by maximizing
the evidence (ML-II) using conjugate gradient, see e.g. [2].

For the RVM, let 1F � � �	� 3 and 1G � 3 with HI�KJ4
 "L
�@ @�@�
 M be
respectively the basis functions and the weight hyper-parameters,
where M is the number of relevance vectors. Since typically MONP

, the RVM yields sparse kernels, spanned by a finite number of
basis functions [3, 10]. For the RVM the predictive distribution (2)
has mean and variance specified byQ � �	���SR � � �7� TVU?��
W9 -X#Y U � �7���SR � � �	� Z ��� R5� �	� 
 (9)

where, choosing Gaussian basis functions, we haveT U�� �[9	��-; Z]\�� B 
 (10)Z>�%� 9	��-; \��?\S8:^_� ����
 (11)^`��&�( )#*E� G � 
�@�@ @�
 G	a�$ 
 (12)F � � �	�]�[� �E��� �I� � � � �	� ��������� � � � �	� !#"�$ 
 (13)R5� �	�]�%� F � � ��� 
�@�@ @�
 F�ab� ��� $ ��
 (14)\>�'1c � � 3��61F � � � � � 34
7d7�K� J#e P $ 
+HI�K� J#e Mf$ . (15)

The details of training the RVM are described in [3, 4].

3. PREDICTION WITH UNCERTAIN INPUT

Assume that the test input � can not be observed directly and the
uncertainty is modeled as �6gih7� �	���ijK� kl
 m�� , with mean k
and covariance matrix m . The resulting predictive distribution is
then obtained by marginalizing over the test input

h7� C�n k�
 m�
 o���� p h7� C�n �?
 o�� h7� �	�Lq��?. (16)

The principle is shown in Figure 1. The marginalization can in
most cases only be carried out using Monte-Carlo numerical ap-
proximation techniques, however, in the case of Gaussian kernels3

it is possible to obtain exact analytical expressions for the mean
and variance of the marginalized predictive distribution:

r � kl
 ml�]� p CI@ h7� C�n k�
�m5
 o���q4C�
W)s+& (17)

t � kl
 ml�]� p � CI� r � kl
 m�� � - h7� C�n kl
 m�
 o]�LqLC�. (18)

The proposed method is an extension of the work presented in [7],
which makes additional approximations, viz. Taylor series expan-
sions of Q � �	� and 9 - � �	� to first and second order around k and

2The exponential in equation (4) is usually multiplied by an additional
hyperparameter whose value is fitted during training. We here set it to u
for clarity, which requires normalizing the data to unit variance.

3Exact analytical results can also be obtained for polynomial kernels,v5w x DLy x+z{�|~} x D5� x+zL} � , e.g. a linear model.
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Fig. 1. Prediction with uncertain input. On the � -axis, the dashed
line represents the Gaussian input distribution, with mean located
by the triangle, from which we draw 100 samples (dots under it).
In the middle of the figure, the solid line represents the true under-
lying function. We fit a model to it, and propagate the 100 input
samples through the model (dots close to the true function). On
the C -axis we project the 100 predicted values (dots) and use them
to estimate the predictive density (dashed line), with mean located
by the triangle. The error bar with a circle and the error bar with
a star show the mean and 95% confidence interval of the Gaussian
approximation with exact computation of mean and variance and
of the method with Taylor expansion respectively.

m . Using properties of the conditional mean and variancer � kl
 ml�]�'�l��� �5�L� C�n ��$ $��S�l��� Q � ��� $ 
 (19)t � k5
 ml�]�'� � � � � � C�n ��$ $�8:� � � � � � C�n ��$ $�'� � � 97-#� ��� $�8:� � � Q � ��� $ 
 (20)

where � � � @ $ , � � � @ $ denote the expectation and variance wrt. � .
When using Gaussian kernels in GPs and Gaussian basis func-
tions in RVMs, the expressions for Q � �	� in eq. (3) and (9) are
Gaussian shaped functions of � and the expressions for 9 - � �7� are
products of Gaussian shaped functions in � . Therefore the inte-
grants involved in determining r � kl
 ml� and t � kl
 m�� are products
of Gaussian shaped functions, which allows an analytical calcula-
tion. In [10] it is shown thatr � kl
 ml���f� ��� . (21)

For the GP �6��1 � � 
�@ @�@�
 ��A�3�� 0 ��� B and for the RVM �6�1 � � 
�@ @�@�
 �+a�35�~TVU?� . Vector � �61� � 
 @�@ @�
 � A 3 is given by� ���>n � ��� m�8f��n �5��
@ � �E��� � J" � k � � � � ��� �f8fm�� ����� k ��� � � ��
 (22)

where � is the identity matrix. Note that if m is the zero matrix,
then � � = � k?� and r � kl
 ml�	� Q � k?� as would be expected.

Further, for the GPt � k5
 ml�]��9�-��� � k���8f�+�l���� � �?�l��� 0 �7� � �
8��+� � � = � k�� = � k�� ��� � � ��� �?��� � 
 (23)
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where ����������	� 
�� �	� 
� � and the elements of matrix
�

are��� ������� � 
� ����� 
��	��� ������� �! #"�� ��$%
(24)� & '�(*) ��� 
+��,�-.� � ���/�0� �.���/�� ��1�/� � ��� ���/�0� 
+��,�-.� 2�3

and where
,�-1� �4 � ,	�5 #,6�.� . For the RVM

7 � 
�3 �8�9�;: 4<>=/? � 
�6 #@6AB ��C� D�D �  FE��/� � G H@6A8B�I �	� 
�� ��� 
�� � ��J J ��K D�D � GML
(25)

Notice that both for GPs and RVMs, when
�

is the zero matrix, ��
is also the zero matrix, again

J����	� 
��
, and 7 � 
83 ����F: 4 � 
�� .

4. APPLICATION TO TIME-SERIES FORECASTING

Suppose that N0O�P Q are the ordered samples of a time-series, whereR
is an integer time index. We wish to make time-series forecast-

ing using a NAR model (1), where the inputs are formed by a col-
lection of previous output values,

, P �SI O�P �/� 3 O�P � 4 3 L0L L03 O�P �UT K ,
where the integer

�
is the size of the lag space.

Given that we have observed the values O5VXWYN>O�P Q.VP Z � , [
being the number of observed samples, computing the predictive
density of the value O V5\ � is readily given by the model from (2)
as ] � O VU\ � � , VU\ � ���+^_� `�� , V5\ � � 3 : 4 � , V5\ � � �
The predictive density of the value O VU\ 4 (two steps ahead) de-
pends on

, V5\ � , which now contains a stochastic element. In gen-
eral, the predictive distribution of O VU\6a , with bXc �

, requires
integrating out the uncertainty of the input:] � O V5\/a � O V �	��d ] � O VU\6a � , V5\/a � ] � , VU\/a � O V ��e�, V5\/a L (26)

It is straightforward that this scheme leads to a recursive den-
sity estimation. The integral in (26) has no analytical solution.
A naı̈ve approach to the recursion is to ignore the
uncertainty in the distribution of the input by setting] � , V5\/a �	��f�� ,1�gI `	� , VU\6a �/� � 30L L0L03 `�� , V5\/a �6T � K ��� 4, thus prop-
agating only the mean predictions. This method yields very poor
error-bars, since it in some way only considers one step ahead pre-
dictions, treating the previous predicted values as exact, and is
therefore overconfident, [7]. Alternatively, one can approximate
the predictive density of O VU\6a by a Gaussian density and compute
only the mean and variance of

] � O VU\6a � O V � . By doing this one en-
sures that the input distribution

] � , VU\6a � O�V � is always Gaussian,
which allows to use the results described in section 3 for comput-
ing the mean and variance of O VU\6h , see eq. (26). This can be done
exactly (for Gaussian or polynomial kernels) or in an approximate
fashion, [7]. The recursive mechanism works because the pre-
dictive distribution of O V5\ � at the first step is Gaussian (26), and
therefore the input distribution of

, V5\ � is also Gaussian. We call
this procedure of recursively approximating the predictive density
by a Gaussian the Recursive Gaussian Predictive Density (RGPD),
and distinguish between exact-RGPD for the case of exact compu-
tation of mean and variance and approximate-RGPD for the case
where the model is approximated by a Taylor expansion, [7].

4Where i>j k�l is m for kCn+o and o otherwise. If pCq!r , we have simplys j t/u�l/n!v>u for wxqxy .

In the RGPD scheme, the input distribution is given by5] � , VU\/a � O V �	�+^_� z VU\6a 30{ V5\/a � 3 (27)

wherez VU\6a �|I }!� 
 VU\6a �/� 3 � V5\/a �/� � 3 L0L0L03 }!� 
 VU\6a �UT 3 � VU\6a �UT � K 3
and where

{ VU\6a is iteratively computed by using the fact that its
first column is given by� { V5\/a � � ~ TU� � �F�0�>�6� O V5\/a 3 , V5\/a ����� �|� �.�/��� �0���!z VU\6a � 3

(28)
where

�0���|� � �/�  �� ��� � �/� � � �/� ,6�� F� �/� 
��
, refer to [10].

5. EXPERIMENTS

We examine the comparative performance of the exact and
approximate-RGPD on a hard prediction problem, the Mackey-
Glass chaotic time series [11], which is well-known for its strong
non-linearity. In [4] we showed that non-linear models, in particu-
lar RVMs, have a prediction error four orders of magnitude lower
than optimized linear models. The Mackey-Glass attractor is a
non-linear chaotic system described by the following equation:e���� R �e R �|�8�0��� R �6 +� ��� R ���U��  #��� R �!�5� � � (29)

where the constants are set to
�F�S��L �

,
�!����L �

and
��� �>�

.
The series is re-sampled with period

�
according to standard prac-

tice. The inputs are formed by
�F� �>�

samples spaced 1 periods
from each other � a ��I � a �/� 3 � a � 4 30L0L L03 � a �UT K and the targets are
chosen to be O a ��� a .

We train a GP model with Gaussian kernel on only 100 exam-
ples — enough to obtain a 1-step ahead normalized mean squared
error on the order of

� � �U�
. Besides, we normalize the data and

contaminate it with a small amount of Gaussian noise with vari-
ance

� � �U�
. Figure 2 shows the result of making 100 iterative

predictions using a GP model, both for the exact-RGPD and the
approximate-RGPD methods. By informal visual inspection, the
error-bars of the exact-RGPD seem to be better than those of the
approximate-RGPD. Consequently the exact-RGPD produces a bet-
ter predictive density, which we show in figure 3. The mean value
of the predictions seems also to be a slightly closer to the true tar-
get values for the exact-RGPD than for the approximate-RGPD.

In order to better evaluate the performance of the proposed
methods, for a given prediction horizon, we compute the nega-
tive log predictive density, the squared error and the absolute error.
While the two last measures only take into consideration the mean
of the Gaussian predictive distribution, the first one also takes into
account its variance. We average over

�.�.�
repetitions with dif-

ferent starting points (chosen at random from the series), and rep-
resent averages of the three loss measures for prediction horizons
ranging from 1 to 100. Figure 3 shows the results. The means are
slightly better for the exact-RGPD, but the predictive distribution
is much improved. The better error-bars obtained by the exact-
RGPD result in a lower value of the negative log predictive den-
sity for all values of the prediction horizon. The performance of
the naı̈ve iterative method is identical to that of the approximate-
RGPD in terms of absolute and squared error. In terms of pre-
dictive density (since it produces unrealistic small error-bars) its
performance is so poor that it is not worth reporting.

5If pCq!r , we have simply ��j t/u�l/n!v.u for wgq*y .
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Fig. 2. ����� iterated predictions for the exact-RGPD (dashed) and
approximate-RGPD (dotted): for each the thicker lines represent
the mean of the predictive distributions and the two thinner lines
around represent the upper and lower bounds of the 95% confi-
dence interval of the Gaussian predictive distributions. The solid
line shows the true target values.

6. CONCLUSIONS

We have derived analytical expressions for the exact computation
of the mean and variance of the marginalized predictive distribu-
tion for uncertain Gaussian test inputs. This analytical expressions
are valid for Gaussian processes and the Relevance Vector Ma-
chine (extended linear models) with Gaussian or polynomial ker-
nels or basis functions. Our results extend the approximate method
presented in [7], where the mean prediction was unaffected by the
input uncertainty. In our case the input uncertainty biases the mean
prediction, by smoothing, which is interesting in itself for pre-
dictions on noisy inputs. Furthermore, in the context of iterated
time-series forecasting, our exact-RGPD not only gives much bet-
ter error-bars, but the mean predictions are closer to the true values,
both in terms of absolute and squared error. We are currently in-
vestigating efficient Monte Carlo methods to avoid the Gaussian
approximation of the recursive predictive density.
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Appendix F

Learning Depth from Stereo

To appear in Deutsche Arbeitsgemeinschaft für Mustererkennung (DAGM) Pat-
tern Recognition Symposium 26, Heidelberg, Germany. Springer.

In this paper we apply Gaussian Process models to a real world task: 3D stereo
vision. While traditionally the task of inferring the spatial position of an object
from the local coordinates in two cameras has been addressed with classic camera
calibration techniques, and photogrammetric models, in this paper we view it
as a “black box” machine learning regression task. Gaussian Processes excel at
this task, compared to other machine learning methods.
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Abstract. We compare two approaches to the problem of estimating
the depth of a point in space from observing its image position in two
different cameras: 1. The classical photogrammetric approach explicitly
models the two cameras and estimates their intrinsic and extrinsic pa-
rameters using a tedious calibration procedure; 2. A generic machine
learning approach where the mapping from image to spatial coordinates
is directly approximated by a Gaussian Process regression. Our results
show that the generic learning approach, in addition to simplifying the
procedure of calibration, can lead to higher depth accuracies than clas-
sical calibration although no specific domain knowledge is used.

1 Introduction

Inferring the three-dimensional structure of a scene from a pair of stereo images
is one of the principal problems in computer vision. The position X = (X, Y, Z)
of a point in space is related to its image at x = (x, y) by the equations of
perspective projection

x = x0 − sxyc ·
r11(X − X0) + r21(Y − Y0) + r31(Z − Z0)

r13(X − X0) + r23(Y − Y0) + r33(Z − Z0)
+ Ξx(x) (1)

y = y0 − c ·
r12(X − X0) + r22(Y − Y0) + r32(Z − Z0)

r13(X − X0) + r23(Y − Y0) + r33(Z − Z0)
+ Ξy(x) (2)

where x0 = (x0, y0) denotes the image coordinates of the principal point of the
camera, c the focal length, X0 = (X0, Y0, Z0) the 3D-position of the camera’s
optical center with respect to the reference frame, and rij the coefficients of a
3× 3 rotation matrix R describing the orientation of the camera. The factor sxy

accounts for the difference in pixel width and height of the images, the 2-D-vector
field Ξ(x) for the lens distortions.

The classical approach to stereo vision requires a calibration procedure before
the projection equations can be inverted to obtain spatial position, i.e., estimat-
ing the extrinsic (X0 and R) and intrinsic (x0, c, sxy and Ξ) parameters of each
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camera from a set of points with known spatial position and their corresponding
image positions. This is normally done by repeatedly linearizing the projection
equations and applying a standard least square estimator to obtain an itera-
tively refined estimate of the camera parameters [1]. This approach neglects the
nonlinear nature of the problem, which causes that its convergence critically de-
pends on the choice of the initial values for the parameters. Moreover, the right
choice of the initial values and the proper setup of the models can be a tedious
procedure.

The presence of observations and desired target values on the other hand,
makes depth estimation suitable for the application of nonlinear supervised learn-
ing algorithms such as Gaussian Process Regression. This algorithm does not re-
quire any specific domain knowledge and provides a direct solution to nonlinear
estimation problems. Here, we investigate whether such a machine learning ap-
proach can reach a comparable performance to classical camera calibration. This
can lead to a considerable simplification in practical depth estimation problems
as off-the-shelf algorithms can be used without specific adaptations to the setup
of the stereo problem at hand.

2 Classical Camera Calibration

As described above, the image coordinates of a point are related to the cameras
parameters and its spatial position by a nonlinear function F (see Eqs. 1 and 2)

x = F(x0, c, sxy, R,X0, Ξ,X) (3)

The estimation of parameters is done by a procedure called bundle adjustment

which consists of iteratively linearizing the camera model in parameter space and
estimating an improvement for the parameter from the error on a set of m known
pairs of image coordinates xi = (xi, yi) and spatial coordinates Xi = (Xi, Yi, Zi).
These can be obtained from an object with a distinct number of points whose
coordinates with respect to some reference frame are known with high precision
such as, for instance, a calibration rig.

Before this can be done, we need to choose a low-dimensional parameteri-
zation of the lens distortion field Ξ because otherwise the equation system 3
for the points 1 . . .m would be underdetermined. Here, we model the x- and y-
component of Ξ as a weighted sum over products of one-dimensional Chebychev
polynomials Ti in x and y, where i indicates the degree of the polynomial

Ξx(x) =

t
∑

i,j=0

aijTi(sxx)Tj(syy), Ξy(x) =

t
∑

i,j=0

bijTi(sxx)Tj(syy), (4)

The factors sx, sy scale the image coordinates to the Chebychev polynomials’
domain [−1, 1]. In the following, we denote the vector of the complete set of
camera parameters by θ = (x0, c, sxy, R,X0, a11, . . . , att, b11, . . . , btt).

In the iterative bundle adjustment procedure, we assume we have a parameter
estimate θn−1 from the previous iteration. The residual li of point i for the
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camera model from the previous iteration is then given by

li = xi − F(θn−1,Xi). (5)

This equation system is linearized by computing the Jacobian J (θn−1) of F at
θn−1 such that we obtain

l ≈ J (θn−1)∆θ (6)

where l is the concatenation of all li and ∆θ is the estimation error in θ that
causes the residuals. Usually, one assumes a prior covariance Σll on l describing
the inaccuracies in the image position measurements. ∆θ is then obtained from
a standard linear estimator [3]

∆θ = (J >Σ−1
ll J )−1JΣ−1

ll l . (7)

Finally, the new parameter estimate θn for iteration n is improved according to
θn = θn−1 + ∆θ. Bundle adjustment needs a good initial estimate θ0 for the
camera parameters in order to ensure that the iterations converge to the correct
solution. There exists a great variety of procedures for obtaining initial estimates
which have to be specifically chosen for the application (e.g. aerial or near-range
photogrammetry).

The quality of the estimation can still be improved by modelling uncertain-
ties in the spatial observations Xi. This can be done by including all spatial
observations in the parameter set and updating them in the same manner which
requires the additional choice of the covariance ΣXX of the measurements of
spatial position [1]. ΣXX regulates the tradeoff between the trust in the accu-
racy of the image observations on the one hand and the spatial observations on
the other hand. For more detailed information on bundle adjustment please refer
to [1].

Once the parameter sets θ(1) and θ(2) of the two camera models are known,
the spatial position X∗ of a newly observed image point (x∗

1 in the first and x∗
2

in the second camera) can be estimated using the same technique. Again, F de-
scribes the stereo camera’s mapping from spatial to image coordinates according
to Eqns. 1 and 2

x∗

k = F(θ(k),X∗), k = 1, 2 (8)

but this time the θ are kept fixed and the bundle adjustment is computed for
estimates of X∗ [1].

3 Gaussian Process Regression

The machine learning algorithm used in our study assumes that the data are
generated by a Gaussian Process (GP). Let us call f(x) the non-linear func-
tion that maps the D-dimensional input x to a 1-dimensional output. Given
an arbitrary set of inputs {xi|i = 1, . . . , m}, the joint prior distribution of the
corresponding function evaluations f = [f(x1), . . . , f(xm)]> is jointly Gaussian:

p(f |x1, . . . ,xm, θ) ∼ N (0, K) , (9)
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4 F. Sinz, J. Quiñonero Candela, G. Bakır, C. E. Rasmussen, M. O. Franz

with zero mean (a common and arbitrary choice) and covariance matrix K.
The elements of K are computed from a parameterized covariance function,
Kij = k(xi,xj , θ), where θ now represents the GP parameters. In Sect. 4 we
present the two covariance functions we used in our experiments.

We assume that the output observations yi differ from the corresponding
function evaluations f(xi) by Gaussian additive i.i.d. noise of mean zero and
variance σ2. For simplicity in the notation, we absorb σ2 in the set of parameters
θ. Consider now that we have observed the targets y = [y1, . . . , ym] associated to
our arbitrary set of m inputs, and would like to infer the predictive distribution
of the unknown target y∗ associated to a new input x∗. First we write the joint
distribution of all targets considered, easily obtained from the definition of the
prior and of the noise model:

p

([

y

y∗

]
∣

∣

∣

∣

x1, . . . ,xm, θ

)

∼ N

(

0,

[

K + σ2 I k∗

k>

∗
k(x∗,x∗) + σ2

])

, (10)

where k∗ = [k(x∗,x1), . . . , k(x∗,xm)]> is the covariance between y∗ and y, and
I is the identity matrix. The predictive distribution is then obtained by condi-
tioning on the observed outputs y. It is Gaussian:

p(y∗|y,x1, . . . ,xm, θ) ∼ N (m(x∗), v(x∗)) , (11)

with mean and variance given respectively by:

m(x∗) = k>

∗
[K + σ2 I]−1y ,

v(x∗) = σ2 + k(x∗,x∗) − k>

∗
[K + σ2 I]−1k∗ .

(12)

Given our assumptions about the noise, the mean of the predictive distribution
of f(x∗) is also equal to m(x∗), and it is the optimal point estimate of f(x∗). It
is interesting to notice that the prediction equation given by m(x∗) is identical
to the one used in Kernel Ridge Regression (KRR) [2]. However, GPs differ from
KRR in that they provide full predictive distributions.

One way of learning the parameters θ of the GP is by maximizing the evidence
of the observed targets y (or marginal likelihood of the parameters θ). In practice,
we equivalently minimize the negative log evidence, given by:

− log p(y|x1, . . . ,x1, θ) =
1

2
log |K + σ2 I| +

1

2
y>[K + σ2 I]−1y . (13)

Minimization is achieved by taking derivatives and using conjugate gradients.
An alternative way of inferring θ is to use a Bayesian variant of the leave-one-
out error (GPP, Geisser’s surrogate predictive probability, [4]). In our study we
will use both methods, choosing the most appropriate one for each of our two
covariance functions. More details are provided in Sect. 4.

4 Experiments

Dataset. We used a robot manipulator holding a calibration target with a flat-
tened LED to record the data items. The target was moved in planes of different
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Fig. 1. Robot arm and calibration target, which were used to record the data items.

depths, perpendicular to the axis of the stereo setup. The spatial position of the
LED was determined from the position encoders of the robot arm with a nomi-
nal positioning accuracy of 0.01mm. The center of the LED was detected using
several image processing steps. First, a threshold operation using the upper 0.01
percentile of the image’s gray-scale values predetected the LED. Then a two-
dimensional spline was fitted through a window around the image of the LED

with an approximate size of 20px. A Sobel operator was used as edge detector on
the spline and a Zhou operator located the LED center with high accuracy (see
[1]). We recorded 992 pairs of spatial and image positions, 200 of which were
randomly selected as training set. The remaining 792 were used as test set.

Classical calibration. During bundle adjustment, several camera parameters
were highly correlated with others. Small variations of these parameters pro-
duced nearly the same variation of the function values of F, which lead to a lin-
ear dependency of the columns of J and thus to a rank deficiency of J >Σ−1

ll J .
Therefore, the parameters of a correlating pair could not be determined prop-
erly. The usual way to deal with this problem is to exclude one of the correlating
parameters from the estimation. As both the principal point x0 and the coeffi-
cients a00, b00 highly correlated with camera yaw and pitch, we assumed them to
be zero and excluded them from estimation. Furthermore a10, b01, a12 and b21

were excluded because of their correlation with sxy and c. As the combination
a01 = −b10 showed a high correlation with the roll angle of the camera, the pa-
rameter a01 was not estimated and its value was set to b01. The correlations of
a20 and a02 with camera yaw resp. b20 and b02 with camera pitch were removed
by setting a20 to b02 and a02 to b20. Higher degree polynomials in the parameter-
ization of the lens distortion field induce vector fields too complex to correlate
with other parameters of the camera such that none had to be switched off due to
correlations (see [6] for more detailed information on the parameterization of the
camera model). We used a ten-fold crossvalidation scheme to determine whether
the corresponding coefficients should be included in the model or not. The er-
ror in the image coordinates was assumed to be conditionally independent with
σ2 = 0.25px, so the covariance matrix Σll became diagonal with Σll = 0.25 · I.



Learning Depth from Stereo 143
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The same assumption was made for ΣXX , though the value of the diagonal
elements was chosen by a ten fold cross validation.

Gaussian Process Regression. For the machine learning approach we used both
the inhomogeneous polynomial kernel

k(x, x′) = σ2
ν 〈x, x′ + 1〉g (14)

of degree g and the squared exponential kernel

k(x, x′) = σ2
ν exp

(

−
1

2

D
∑

d=1

1

λ2
d

(xd − x′

d)
2

)

. (15)

with automatic relevance determination (ARD). Indeed, the lengthscales λd can
grow to eliminate the contribution of any irrelevant input dimension.

The parameters σ2
ν , σ2 and g of the polynomial covariance function were es-

timated by maximizing the GPP criterion [4]. The parameters σ2
ν , σ2 and the λd

of the squared exponential kernel were estimated by maximizing their marginal
log likelihood [5]. In both cases, we used the conjugate gradient algorithm as
optimization method.

We used two different types of preprocessing in the experiments: 1. Scaling
each dimension of the input data to the interval [−1, 1]; 2. Transforming the
input data according to

(x1, y1, x2, y2) 7→

(

1

2
(x1 − x2),

1

2
(x1 + x2),

1

2
(y1 − y2),

1

2
(y1 + y2)

)

. (16)

The output data was centered for training.

5 Results

The cross validation for the camera model yielded σX = 2mm as best a priori
estimation for the standard deviation of the spatial coordinates. In the same
way, a maximal degree of t = 3 for the Chebychev polynomials was found to be
optimal for the estimation of the lens distortion. Table 1 shows the test errors
of the different algorithms and preprocessing methods.

All algorithms achieved error values under one millimeter. Gaussian Pro-
cess regression with both kernels showed a superior performance to the classical
approach. Fig. 5 shows the position error according to the test points actual
depth and according to the image coordinates distance to the lens center, the so
called excentricity. One can see that the depth error increases nonlinearly with
increasing spatial distance to the camera. Calculation of errors shows that the
depth error grows quadratically with the image position error, so this behaviour
is expected and indicates the sanity of the learned model. Another hint that all
of the used algorithms are able to model the lens distortions is the absence of a
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Table 1. Test error for bundle adjustment and Gaussian Process Regression with
various kernels, computed on a set of 792 data items. Root mean squared error of the
spatial residua was used as error measure.

Method Test Error Preprocessing

Bundle adjustment 0.38mm -
Inhomogeneous polynomial 0.29mm scaled input
Inhomogeneous polynomial 0.28mm transformed, scaled input
Squared exponential 0.31mm scaled input
Squared exponential 0.27mm transformed, scaled input

trend in the right figure. Again, the learning algorithms do better and show a
smaller error for almost all excentricities.

The superiority of the squared exponential kernel to the polynomial can be
explained by its ability to assign different length scales to different dimensions of
the data and therefore set higher weights on more important dimensions. In our
experiments 1

λ2

1

and 1
λ2

3

were always approximately five times larger than 1
λ2

2

and
1
λ2

4

, which is consistent with the underlying physical process, where the depth of

a point is computed by the disparity in the x-direction of the image coordinates.
The same phenomenon could be observed for the transformed inputs, where
higher weights where assigned to the x1 and x2.

6 Discussion

We applied Gaussian Process Regression to the problem of estimating the spatial
position of a point from its coordinates in two different images and compared its
performance to the classical camera calibration. Our results show that the generic
learning algorithms performed better although maximal physical knowledge was
used in the explicit stereo camera modelling.
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Fig. 2. Position error depending on the actual depth of the test point (left figure) and
on the distance to the lens center, the so called excentricity (right figure).
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An additional advantage of our approach is the mechanical and therefore
simple way of model selection, while the correct parametrization of a camera
model and elimination of correlating terms is a painful and tedious procedure.
Moreover the convergence of the regression process does not depend on good
starting values like the estimation of the camera model’s parameters does.

A disadvantage of the machine learning approach is that it does not give
meaningful parameters such as position and orientation in space or the camera’s
focal length. Moreover, it does not take into account situations where the exact
spatial positions of the training examples are unknown, whereas classical camera
calibration allows for an improvement of the spatial position in the training
process.

The time complexity for all algorithms is O(m3) for training and O(n) for
the computation of the predictions, where m denotes the number of training
examples and n the number of test examples. In both training procedures, ma-
trices with a size in the order of the number of training examples have to be
inverted at each iteration step. So the actual time needed also depends on the
number of iteration steps, which scale with the number of parameters and can
be assumed constant for this application. Without improving the spatial coordi-
nates, the time complexity for the training of the camera model would be O(p3),
where p denotes the number of parameters. But since were are also updating the
spatial observations, the number of parameters is upper bounded by a multiple
of the number of training examples such that the matrix inversion in (7) is in
O(m3). An additional advantage of GP is the amount of time actually needed
for computing the predictions. Although predicting new spatial points is in O(n)
for GP and the camera model, predictions with the camera model always con-
sume more time. This is due to the improvements of the initial prediction with
a linear estimator which again is an iterative procedure involving an inversion
of a matrix of constant size at each step.
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