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Abstract. This Chapter presents the PASCAL1 Evaluating Predictive
Uncertainty Challenge, introduces the contributed Chapters by the par-
ticipants who obtained outstanding results, and provides a discussion
with some lessons to be learnt. The Challenge was set up to evaluate
the ability of Machine Learning algorithms to provide good “probabilis-
tic predictions”, rather than just the usual “point predictions” with no
measure of uncertainty, in regression and classification problems. Parti-
cipants had to compete on a number of regression and classification tasks,
and were evaluated by both traditional losses that only take into account
point predictions and losses we proposed that evaluate the quality of the
probabilistic predictions.

1 Motivation

Information about the uncertainty of predictions, or predictive uncertainty, is
essential in decision making. Aware of the traumatic cost of an operation, a
surgeon will only decide to operate if there is enough evidence of cancer in
the diagnostic. A prediction of the kind “there is 99% probability of cancer”
is fundamentally different from “there is 55% probability of cancer”, although
both could be summarized by the much less informative statement: “there is
cancer”. An investment bank trying to decide whether to invest or not in a
given fund might react differently at the prediction that the fund value will
increase by “10%± 1%” than at the prediction that it will increase by “10%±
20%”, but it will in any case find any of the two previous predictions way more
useful than the point prediction “the expected value increase is 10%”. Predictive
uncertainties are also used in active learning to select the next training example
which will bring most information. Given the enormous cost of experiments
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with protein binding chips, a drug making company will not bother making
experiments whose outcome can be predicted with very low uncertainty.

Decisions are of course most often based on a loss function that is to be mini-
mized in expectation. One common approach in Machine Learning is to assume
knowledge of the loss function, and then train an algorithm that outputs de-
cisions that directly minimize the expected loss. In a realistic setting however,
the loss function might be unknown, or depend on additional factors only de-
termined at a later stage. A system that predicts the presence of calcification
from a mammography should also provide information about its uncertainty.
Whether to operate or not will depend on the particular patient, as well as on
the context in general. If the loss function is unknown, expressing uncertainties
becomes crucial. Failing to do so implies throwing information away.

One particular approach to expressing uncertainty is to treat the unknown
quantity of interest (“will it rain?”) as a random variable, and make to predic-
tions in the form of probability distributions, also known as predictive distribu-
tions. We will center our discussion around this specific representation of the
uncertainty. But, how to produce reasonable predictive uncertainties? What is
a reasonable predictive uncertainty in the first place?

Under the Bayesian paradigm, posterior distributions are obtained on the
model parameters, that incorporate both the uncertainty caused by the noise,
and by not knowing what the true model is. Integrating over this posterior al-
lows to obtain the posterior distribution on the variables of interest; the predic-
tive distribution arises naturally. Whether the resulting predictive distribution
is meaningful depends of course on the necessary prior distribution, and one
should be aware of the fact that inappropriate priors can give rise to arbitrarily
bad predictive distributions. From a frequentist point of view, this will be the
case if the prior is “wrong”. From a Bayesian point of view, priors are neither
wrong nor right, they express degrees of belief. Inappropriate priors that are
too restrictive, in that they discard plausible hypotheses about the origin of the
data, are sometimes still used for reasons of convenience, leading to unreasonable
predictive uncertainties (Rasmussen and Quiñonero-Candela, 2005). If you be-
lieve your prior is reasonable, then the same should hold true for the predictive
distribution. However, this distribution is only an updated belief — the extent
to which it is in agreement with reality will depend on the extent to which the
prior encompasses reality.

It is common in Machine Learning to not consider the full posterior distribu-
tion, but to rather concentrate on its mode, also called the Maximum a Posteriori
(MAP) approach. The MAP approach being equivalent to maximum penalized
likelihood, one could consider that any method based on minimizing a regularized
risk functional falls under the MAP umbrella. The MAP approach produces pre-
dictions with no measure of the uncertainty associated to them, like “it will rain”;
other methods for obtaining predictive uncertainties are then needed, such as
Bagging for example (Breiman, 1996). More simplistic approaches would consist
in always outputting the same predictive uncertainties, independently of the in-
put, based on an estimate of the overall generalization error. This generalization



Evaluating Predictive Uncertainty Challenge 3

error can in turn be estimated empirically by cross-validation, or theoretically
by means Statistical Learning bounds on the generalization error. This simplis-
tic approach should of course be regarded as a baseline, since any reasonable
method that individually estimates predictive uncertainties depending on the
input could in principle be superior.

It appears that there might not be an obvious way of producing good esti-
mates of predictive uncertainty in the Machine Learning (or Statistical Learning)
community. There is also an apparent lack of consensus on the ways of evalu-
ating predictive uncertainties in the first place. Driven by the urgent feeling
that it might be easier to validate the goodness of the different philosophies
on the empirical battleground than on the theoretical, we decided to organize
the Evaluating Predictive Uncertainty Challenge, with support from the Euro-
pean PASCAL Network of Excellence. The Challenge allowed different Machine
Learning approaches to predictive uncertainty in regression and classification to
be directly compared on identical datasets.

1.1 Organization of This Chapter

We begin by providing an overview and some facts about the Challenge in Sect. 2.
We then move on to describing in detail the three main components of the
Challenge: 1) in Sect. 3 we define what is meant by probabilistic predictions in
regression and in classification, and explain the format of the predictions that
was required for the Challenge, 2) in Sect. 4 we present the loss functions that
we proposed for the Challenge, and 3) Section 5 details the five datasets, two for
classification and three for regression, that we used for the Challenge. In Sect. 6
we present the results obtained by the participants, and in Sect. 7 we focus
in more detail on the methods proposed by the six (groups of) participants
who contributed a Chapter to this book. The methods presented in these six
contributed chapters all achieved outstanding results, and all the dataset winners
are represented. Finally, Sect. 8 offers a discussion of results, and some reflection
on the many lessons learned from the Challenge.

2 An Overview of the Challenge

The Evaluating Predictive Uncertainty Challenge was organized around the fol-
lowing website: http://predict.kyb.tuebingen.mpg.de. The website remains open
for reference, and submissions are still possible to allow researchers to evaluate
their methods on some benchmark datasets.

The results of the Challenge were first presented at the NIPS 2004 Workshop
on Calibration and Probabilistic Prediction in Machine Learning, organized by
Greg Grudic and Rich Caruana, and held in Whistler, Canada, on Friday Decem-
ber 17, 2004. The Challenge was then presented in more depth, with contributed
talks from some of the participants with best results at the PASCAL Challenges
Workshop held in Southampton, UK, on April 11, 2005.
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Using the website, participants could download the datasets (described in
Sect. 5), and submit their predictions. Immediately after submission, the results
obtained where displayed in a table, and sorted according to the loss (given in
Sect. 4). Inspired by the NIPS 2003 Feature Selection Challenge (Guyon et al,
2005), we divided the Challenge chronologically into two parts. In the first part
the competing algorithms were evaluated on a “validation set”, with no limita-
tion on the number of submissions. In the second part, shorter, of duration one
week, the validation targets were made available and participants had to make
a limited number of final submissions on the “test set”. The final ranking of the
Challenge was built according to the test performance.

The reason for having a validation set evaluation in the first part is to allow
for temporary assessment and comparison of the performance of the different
submissions. Simply put, to make the challenge more “fun” and encourage par-
ticipation by immediately allowing to see how the participants were doing in
comparison to others. To discourage participants from trying to guess the vali-
dation targets by making very many submissions, the targets associated to the
validation set were be made public at the start of the second part of the Chal-
lenge, one week before the submission deadline. The participants could then use
them to train their algorithms before submitting the test predictions.

Unlike in the NIPS 2003 Feature Selection Challenge (Guyon et al, 2005),
participants did not need to submit on every of the five datasets to enter the
final ranking. Individual rankings were made for each of the datasets. Indeed,
as discussed in Sect. 5, the nature of the datasets was so diverse that one could
hardly expect the same algorithm to excel in all of them. Our intention was to
evaluate algorithms and methods rather than participants.
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Fig. 1. Number of valid submissions on each day of the Challenge. Notice the break
between the first and the second phase of the Challenge: the 68 valid test submissions
were made on days 28 to 31.
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The Challenge ran for 31 days, and attracted 20 groups of participants. A
total of 280 submissions were made, of which 68 were “final” submissions on the
test set. Figure 1 shows the number of submissions that were made each day of
the Challenge.

The website opened for submissions on November 10 2004, and closed on
December 10 2004. The second phase of the Challenge, with validation targets
available and predictions to be made on the test inputs, started on December
3. The test results were made public on December 11. The website remains
open for submission. After the closing deadline, some interesting submissions
were made, which we include in the results section. Some of the contributed
chapters were also written by participants who made very good post-Challenge
submissions.

2.1 Design of the Website

When we designed the webpage for the Evaluating Predictive Uncertainty Chal-
lenge we had two objectives in mind. First, to build it in as flexible a way as
possible way in order to be able to do minor changes very easily, like for example
including additional losses, even during the competition. The second objective
was a high degree of automation, to be able to for example give instant feed-
back whenever a submission was made. This way the participants were able to
compare their preliminary scores with those the other participants.

The webpage consists of two separate parts, appearance and functionality,
that are kept disjoint possible. An overview is given in Fig. 2. The website’s ap-
pearance, was programmed with the use of PHP and CSS. PHP (PHP Hypertext
Preprocessor) is a widely used open source script language, specially suited for
easy website development, that can be embedded into HTML code. We used it
to define the website’s global structure on a higher level, that is to dynamically
create HTML code. CSS (cascading style-sheets) is a simple standard for defin-
ing the style of a website. While the website’s structure was created by PHP
via HTML, CSS was used to define its final look. PHP was also used to im-
plement a part of the website’s functionality like managing the ftp upload and
the interaction with external applications. The remaining functional part was
implemented using Python and MySQL. Python is an interpreted, interactive,
object-oriented programming language that combines a very clear syntax with
a remarkable power. Although it is not open source, it is absolutely free. We
used it in the project for mathematical computations, to compute the scores of
the submissions, and to verify that the submissions were correctly formatted.
MySQL is a key part of LAMP (Linux, Apache, MySQL, PHP/Perl/Python)
and the world’s most popular open source database. We used it to maintain
a database of all information relevant to the submissions, as well ad the error
scores under the different losses we used.

The appearance of the Challenge website is shown in 3. The structural frame-
work of the website was implemented by the exclusive use of PHP. The structure
of the navigation bar is defined in an separate file, used by formatting functions to
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Fig. 2. Top: The website’s functional units and the programming languages used to
implement them. Bottom: Interaction control between user, website and database.
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Fig. 3. Screenshot of the website’s result page

determine the actual HTML code. That way new pages can easily be integrated
in or removed from the existing website structure. Formatting functions are also
used to put together the navigation bar itself, the contents of the different pages
and to produce the final HTML code. All this is transparent to the users, all
that is sent to them is pure HTML.

Example Process Flow. Let us describe the interaction between the differ-
ent single components given above during the submission of predictions. This
is also shown in the right diagram of figure 2. After checking the validity of
informations entered by the user into the form of the submission page, the sub-
mission is uncompressed into a temporary directory and the format of the pre-
diction files is checked. If errors are found at this stage, they are collected and
jointly reported to the user. If no errors are found, the information related to
the submission, like the description of the method, the submission time-stamp,
the name of the participant, etc, are stored in a MySQL table and the eval-
uation scores are computed and inserted into the database. After moving the
submitted file to a backup directory, a “successful submission” message is given
to the user. At this point, the results of this submission are already available
from the results table. If the user enters the results page, the evaluation scores
for this challenge type and the default dataset are requested from database,
sorted according to a default score, formatted by PHP and displayed. The
user can change sorting the results according to a different loss, request the
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descriptions of other submissions, or access the results for a different dataset.
Every time she does so, a completely new result table is requested from the
database.

3 Probabilistic Predictions in Regression and
Classification

The two modelling tasks addressed in the Challenge were binary classification
and scalar output regression. For classification let the two classes be labelled by
“+1” and “-1”. Probabilistic predictions were required: for a each test input x∗,
the participant was required to provide the predictive (or posterior) probability
of the label of that case being of class “+1”:

p(y∗ = +1|x∗) ∈ [0, 1] , p(y∗ = −1|x∗) = 1 − p(y∗ = +1|x∗) . (1)

For regression, participants were required to specify the probability density
function of the output y∗ associated to the test input x∗. Two possibilities are
offered. The first, simpler one, is to describe the predictive density in a paramet-
ric form by means of a Gaussian density function. The predictive mean m∗ and
variance v∗ need to be specified:

p(y∗|x∗) ∼ 1√
2πv∗

exp
(

−‖y∗ − m∗‖2

2v∗

)
. (2)

In some situations more complex predictive densities are appropriate (for exam-
ple multi-modal). To allow participants to approximately specify any predictive
density function we allowed them to describe it by means of any given number
N of quantiles [qα1 , . . . , qαN ] such that:

p(y∗ < qαj | x∗) = αj , 0 < αj < 1 . (3)

Imposing 0 < αj < 1 avoids that some regions of the output space be given
zero probability, which is unreasonable under the loss we use (see Sect. 4). The
remaining probability mass, equal to α1 + (1 − αN ), is accounted for by two
exponential tails of the form p̂(y|x) ∝ exp(−|y|/b).

Figure 4 gives an example of a predictive density being specified by quantiles.
The participants need to specify the quantiles and their values. To recover the
estimated predictive density p̂(y∗|x∗) from the quantiles, we need to distinguish
between three cases:

1. if qα1 ≥ y∗ > qαN and αi and αi+1 are such that qαi ≥ y∗ > qαi+1 then

p̂(y∗|x∗) =
αi+1 − αi

qαi+1 − qαi

, (4)
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Fig. 4. Specifying the predictive density with quantiles. Example where the quantiles
q0.2 = −2, q0.3 = −1, q0.8 = 1 and q0.9 = 3 are specified. The exponential tails
guarantee that distribution integrates to 1.

2. if y < qα1 then from the lower exponential tail:

p̂(y∗|x∗) = z1 exp
(

−|y∗ − qα1 |
b1

)
,

z1 = p̂(qα1 |x∗) =
α2 − α1

qα2 − qα1

,

∫ qα1

−∞
p̂(qα1 |x∗) = α1 ⇐⇒ b1 =

α1

z1
.

(5)

3. if qαN ≥ y then from an upper exponential tail:

p̂(y∗|x∗) = zN exp
(

−|y∗ − qαN |
bN

)
,

zN = p̂(qαN |x∗) =
αN − αN−1

qαN − qαN−1

,

∫ ∞

qαN

p̂(qα1 |x∗) = (1 − αN ) ⇐⇒ bN =
(1 − αN )

zN
.

(6)

In addition to the loss that takes into account the probabilistic nature of
the predictions we will also compute the standard mean squared error loss (see
Sect. 4). Since we only obtain predictive densities from the participants, we need
to compute their mean, which is the optimal point estimator under the squared
loss. For the case where quantiles are specified, computing the predictive mean
is easily done by computing the following three contributions:

– The contribution of the quantiles to the mean is:

mq =
N−1∑
i=1

[
qαj + qαj+1

2

]
(αj+1 − αj) (7)
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– The contribution of the lower exponential tail is:

mlt = z1

∫ ∞

0
(qα1 − y∗) exp

(
−y∗

b1

)
= z1(qα1b1 − b1

2) = α1(qα1 − α2
1

z1
) (8)

– Similarly, the contribution of the upper exponential tail is:

mut = zN

∫ ∞

0
(qαN + y∗) exp

(
− y∗

bN

)
= zN (qαN bN + bN

2)

= (1 − αN )
[
qαN +

(1 − αN )2

zN

] (9)

The estimate of the mean is obtained by adding up the terms:

m = mq + mlt + mut. (10)

4 Loss Functions Proposed

Algorithms that perform well under classical losses, for hard decisions in clas-
sification and, scalar predictions in regression, do not necessarily perform well
under losses that take into account predictive uncertainties. For this reason, we
did evaluate the performance with losses of both natures.

In Sect. 4.1 we describe the losses used for classification, and in Sect. 4.2 those
used for regression. We will denote the actual target associated to input xi by
ti. In classification ti will take the value “+1” or “-1”, and in regression a value
in R. In Sect. 4.3 we justify the use of losses based on the logarithm for the
evaluation of probabilistic predictions.

4.1 Losses for Classification

We used three losses for classification. The classic average classification error
(relative number of errors, or 0/1 loss), the negative log probability (log loss,
or negative cross entropy), and the “lift loss”. The final ranking was established
according to the log loss, the two other losses being used only for comparison.

The Average Classification Error

L =
1
n

⎡
⎣ ∑
{i|ti=+1}

1{p(yi = +1|xi) < 0.5} +
∑

{i|ti=−1}
1{p(yi = +1|xi) ≥ 0.5}

⎤
⎦

(11)
where 1{z} is an indicator function, equal to 1 if z=true, and to 0 if z=false.
This is the classic 0/1 loss, obtained by thresholding the predictive probabilities
at 0.5. Its minimum value is 0, obtained when no test (or validation) examples
are missclassified; it is otherwise equal to the fraction of missclassified examples
relative to the total number of examples.
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Fig. 5. NLP loss when predicting the class of a single test point that actually belongs
to class “+1”. Observe how the loss goes to infinity as the model becomes increasingly
certain that the point belongs to the wrong class.

The Negative Log Probability (NLP) Loss

L = − 1
n

⎡
⎣ ∑
{i|ti=+1}

log p(yi = +1|xi) +
∑

{i|ti=−1}
log [1 − p(yi = +1|xi)]

⎤
⎦ (12)

Notice that this loss penalizes both over and under-confident predictions. Over-
confident predictions can be infinitely penalized, which should discourage pre-
dictive probabilities equal to zero or one. Zero is the minimum value of this
loss, that could be achieved if one predicted correctly with 100% confidence. If
one predicts otherwise, the worse one predicts, the larger the loss. This loss is
also referred to as ”negative cross-entropy loss”. Figure 5 shows NLP loss in-
curred when predicting the class of a single point xi that belongs to class “+1”.
The figure illustrates how the penalty becomes infinite as the predictor becomes
increasingly certain that the test point belongs to the wrong class.

An interesting way of using this loss, is to give it relative to that of the random
uninformative predictor, that always predicts 0.5. If one takes the difference
between the log loss of a given algorithm and that of the random predictor one
obtains the average gain in information (in bits if one takes base 2 logarithms).

The LIFT Loss. Although we decided not to rely on this loss to rank the sub-
missions, which we ranked according to the log loss instead, we have decided to
still explain it here, since it might be useful to some readers for other purposes.
The “LIFT loss” is based on the area under the lift loss curve, and is minimum
when that area is maximum. We define it in such a way that it is equal to 1
for an average random predictor. As we will explain, the LIFT loss is the area lost
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Fig. 6. Explaining the LIFT loss. The curve is the lift loss of the ideal predictor, and
the line above it is a simple upper bound on it. The shaded region is the area under
the average loss curve of a random predictor. The LIFT loss is defined as the ratio
between two areas. The numerator is given by the area encompassed by the upper
bound lift curve and the lift curve of the predictor being evaluated. The denominator
is given by the area encompassed between the upper bound lift curve and that of the
average random predictor. In this way the LIFT loss is the area lost relative to the
ideal predictor, normalized by the loss of the average random predictor.

to the ideal predictor by the evaluated predictor, normalized by the area lost to
the ideal predictor by the average random predictor. The reason why we build
a loss based on the area under the lift loss, rather than looking at a particular
value of the lift loss is similar to the reason why the area under the Area Under
the ROC Curve (AUC) (Hanley and McNeil, 1982) has become a popular loss.
In the absence of a specific point at which to evaluate the lift loss, we go for a
measure that integrates over all its values.

The lift loss is obtained by first sorting the predictive probabilities with pi =
p(yi = +1|xi) for the n test points in decreasing order: ps1 ≥ ps2 ≥ . . . ≥ psn .
The obtained reordering contained in the si’s is applied to the test targets, and
for k = 1, . . . , n the lift loss is defined as:

l(k/n) =
1

n̄+

1
k

k∑
i=1

1{tsi = +1} , n̄+ =
n+

n
, (13)

where n+ is the number of test examples that belong to class “+1”. Notice that
the lift loss is always, positive, that l(1) = 1 and that l(k/n) ≤ 1/n̄+.

Figure 6 shows in blue the lift curve for an ideal predictor that would get
a perfect ordering. In the figure we have set n̄+ = 0.3. For 0 ≤ k/n ≤ n+,
all ysk

=“+1”, and therefore the lift loss is equal to 1/n+ (from Eq. 13). For
k/n > n+, all ysk

=“-1” and therefore the lift loss is l(k/n) = n/k. The average
lift loss of a random predictor is l(k/n) = 1 for all k. The shaded gray region
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in the figure represents the area under the average lift loss of such a random
predictor, whose surface is equal to 1. In magenta we show a simple linear upper
bound to the ideal lift curve, where the n/k decaying part of the ideal loss is
replaced by a linear upper bound.

The area under the upper bound curve to the lift loss of the ideal predictor
is given by:

AI = 1 +
1
2

(
1

n̄+
− 1

)
(n̄+ + 1) , (14)

while the area under the lift loss curve for the predictor we want to evaluate is
given by

A =
1
n

n∑
k=1

l(k/n) . (15)

In order to obtain a loss that is equal to 1 for the average random predictor,
we define the LIFT loss as the ratio between the area lost by the predictor being
evaluated and the area lost by the average random predictor:

L =
AI − A
AI − 1

(16)

Notice that L � 0 is the minimum loss, L ≈ 1 is the average loss of a random
predictor, and L > 1 is worse than random.

4.2 Losses for Regression

We used two losses to evaluate performance in the regression tasks. The first
is the classic average normalized mean squared error (nMSE), which only takes
into account the means of the predictive distributions (these are the optimal
point estimates under the nMSE loss). The second loss is the average negative
log predictive density (NLPD) of the true targets. We used the NLPD to rank
the results of the participants.

The nMSE Loss

L =
1
n

n∑
i=1

(ti − mi)2

var(t)
(17)

where mi is the mean of the predictive distribution p(yi|xi). Observe that we
normalize the MSE wrt. to the variance of the true targets: predicting the em-
pirical mean of the training targets, independently of the test input, leads thus
to a normalized MSE of close to 1. In practice of course, we don’t know the
variance of the true test targets, and we simply estimate var(t) empirically by
computing the sample variance of the test targets.

The NLPD Loss

L = − 1
n

n∑
i=1

log p(yi = ti|xi) (18)
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Fig. 7. NLPD loss (up to a constant) incurred when predicting at a single point with
a Gaussian predictive distribution. In the figure we have fixed ‖ti −mi‖2 = 1 and show
how the loss evolves as we vary the predictive variance vi. The optimal value of the
predictive variance is equal to the actual squared error given the predictive mean.

This loss penalizes both over and under-confident predictions. To illustrate this,
let us take a closer look at the case of Gaussian predictive distributions. For a
predictive distribution with mean mi and variance vi the NLPD loss incurred
for predicting at input xi with true associated target ti is given by:

Li =
1
2

[
log vi +

(ti − mi)2

vi

]
+ c , (19)

where c is a constant, independent of mi and vi. Given mi, the optimal value of
vi is (ti − mi)2. Figure 7 illustrates the variation of Li as a function of vi when
(ti − mi)2 = 1.

The NLPD loss favours conservative models, that is models that tend to be
under-confident rather than over-confident. This is illustrated in Fig. 7, and can
be deduced from the fact that logarithms are being used. An interesting way of
using the NLPD is to give it relative to the NLPD of a predictor that ignores
the inputs and always predicts the same Gaussian predictive distribution, with
mean and variance the empirical mean and variance of the training data. This
relative NLPD translates into a gain of information with respect to the simple
Gaussian predictor described.

4.3 Discussion About Losses

Both log losses, NLP and NLPD, have the property of infinitely penalizing wrong
predictions made with zero uncertainty. It might be argued that this is too strong
a penalty. However, on the one hand if one is to take probabilistic predictions
seriously, it might be desirable for consistency to discourage statements made
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with 100% confidence, that turn out to be wrong. On the other hand, think
about the binary classification problem. If n data points are observed, it might
seem ambitious to have predictive uncertainties smaller than 1/n: one has just
not observed enough data to be more confident than that! So one obvious tech-
nique to avoid infinite penalties in classification would be to replace those pre-
dictive probabilities smaller than 1/n by 1/n, and those larger than 1 − 1/n
by 1 − 1/n.

In regression, using the NLPD can be dangerous for certain specific types of
outputs. Take for example the case where in a regression problem the outputs
take values from a (potentially large) finite discrete set. One obvious strategy
to minimize the NLPD in that case would be to distribute the available prob-
ability mass equally on tiny intervals one around each discrete output value.
Since the NLPD only cares about density, the NLPD can be made arbitrarily
small by decreasing the width of the intervals. Of course, there are machine
precision limitations in practice. In this Challenge we had two datasets, Stere-
opsis (with outputs very close to discrete) and Gaze (with discrete outputs),
where the NLPD could be exploited in this way (see Sect. 5). One way out
of this issue would be to limit the minimum interval size when specifying pre-
dictive distributions by means of histograms, detailed in Sect. 4.2. The con-
tributed Chapter by Kohonen and Suomela addresses this potential problem
with the NLPD, and proposes an alternative loss for probabilistic predictions in
regression.

For classification, the mutual information between the true class labels and
the predicted class labels is sometimes used as a measure of performance. The
mutual information however is an aggregate measure, that only depends on the
conditional probabilities of predicting one class given that another class is true. It
is totally insensitive to individual predictive probabilities, and therefore useless
for our purposes. The Area Under the ROC Curve (AUC) is another common
measure of performance, for classifiers that are able to output some number
whose magnitude relates to the degree of belief that a point belongs to one class
rather than to the other. The AUC score is fully determined by the ordering
of these scalar predictions, and does not capture anything at all about calibra-
tion. In fact, the AUC score ignores the fact that the outputted numbers are
probabilities. These are the reasons why we did not used the AUC score in this
Challenge.

5 Datasets Proposed

We proposed two datasets for classification, and 3 for regression tasks for the
Challenge, summarized in Table 1. All datasets are “real world data” in the sense
that they were not synthesized nor fabricated, but rather measured or extracted
from a real phenomenon.

The Gatineau and Outaouais datasets come from industry, and we are unfor-
tunately not allowed to reveal any details about them. They were kindly donated
by Yoshua Bengio, to whom we are very grateful.
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Table 1. Datasets proposed for the Challenge. dim: input dimension. # Tr, # Val and
# Test are respectively the number of training, validation and test cases. SV and ST
are respectively the number of submissions during the validation and during the test
phase of the Challenge.

Classification
Name dim # Tr # Val # Test SV ST
Catalysis 617 873 300 700 44 11
Gatineau 1092 3000 2176 3000 52 27

Regression
Name dim # Tr # Val # Test SV ST
Stereopsis 4 192 300 500 18 8
Gaze 12 150 300 427 50 16
Outaouais 37 20000 9000 20000 22 5

Catalysis. This dataset comes from the Yeast Functional Catalog2, and was
kindly prepared by Alexander Zien at the Max Planck Institute for Biological
Cybernetics. The binary targets are obtained from assigning the functional cat-
egories of all yeast proteins to one of two classes. These two classes roughly
correspond to presence (or absence) of catalytic activity. The inputs are gene
expression levels of the genes encoding those proteins. The dataset is quite bal-
anced, there are approximately as many positive as negative examples.

Gatineau. (Secret data) This is a very unbalanced binary classification dataset,
with less than 10% positive examples. The data is also very hard to model, which
makes the average classification (0/1 Loss) useless in practice. Models have to
compete in terms of their probabilistic predictions.

Stereopsis. This dataset was collected at the Max Planck Institute for Bio-
logical Cybernetics, for a detailed account see (Sinz et al, 2004). The dataset
was obtained by measuring the 3 dimensional location of a pointer attached to
a robot arm by means of two high resolution cameras. The resulting 4 dimen-
sional inputs correspond to the two pairs of coordinates on both cameras focal
planes. Figure 8 illustrates one particularity of this dataset, that turns out to
be of central importance when analyzing the results: when collecting the data,
measurements were taken at a set of parallel planes, giving the impression that
the variable to be estimated (the depth) was in fact naturally clustered around
the discrete set of distances of the planes to the cameras.

Gaze. This dataset was also collected at the Max Planck Institute for Biolog-
ical Cybernetics, with the help of Kienzle to whom we are very grateful. The
targets are the pixel value of the horizontal position of a target displayed on a
computer monitor. The corresponding 12-dimensional inputs are a set of mea-
surements from head mounted cameras, that focus on markers on the monitor

2 http://mips.gsf.de

http://mips.gsf.de
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Fig. 8. Test targets of the Stereopsis datasets plotted against their index. The targets
are clearly clustered around what appears to be 10 discrete values. In fact, there is
structure within each “cluster”. This discretization is solely an artifact of the way the
data was collected, and has nothing to do with its nature.

and estimate the positions of the eyes of the subject looking at the monitor.
This experimental setup is prone to severe outliers, since the cameras occasion-
ally loose their calibration. It was indeed the case that there were severe outliers
in the data, which the participants had to deal with, as reported in their con-
tributed Chapters in the following. Another strong peculiarity of this dataset
was that, being pixel values, the targets were discrete! This was exploited for in-
stance by Kurogi et. al (see their contributed Chapter in this Volume) to “abuse”
the NLPD loss. See Sect. 4.3 for a discussion on abusing the NLPD loss. This is
just an example of the fact that losses and datasets should not be independent,
but rather the opposite, see Sect. 8.

Outaouais. (Secret data) This is a regression dataset with very structured
inputs, strongly clustered. This was noticed and exploited by Kohonen and
Suomela, see Sect. 6.

6 Results of the Challenge

We now give the results of the Challenge for each of the datasets, following
the order in which we presented them in table 1. We only provide a short list
of the best performing entries. The complete tables can be found online, in
the Challenge webpage: http://predict.kyb.tuebingen.mpg.de. The names
of the participants who have contributed a Chapter to this Volume are shown
in bold characters in the results tables. All dataset winners have contributed a
chapter to this volume, in addition to some other participants with best results.
The contributed Chapters are presented in Sect. 7.
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The entries made before the validation targets were released are marked with
a less than sign ‘<’, meaning “before” the final submission period. The entries
made after the deadline of December 10th 2004 (post-Challenge entries) are
marked with a greater than sign ‘>’, meaning “after”. The remaining entries
(with no mark) were made after the validation targets were available, and be-
fore the submission deadline of December 10th, 2004. The entries made before
the validation targets were released only benefited from the training targets,
while the final entries benefited both from the training and validation targets.
The test targets have never been released, therefore the post-Challenge entries
had only the training and validation targets available. Some of the participants
who made post-Challenge entries have also contributed invited chapters to this
volume.

The results are compared to a baseline method. In classification, the baseline
outputs the empirical training class frequencies independently of the inputs. In
regression, the baseline is a Gaussian predictive distribution independent of the
inputs, with mean and variance equal to the empirical mean and variance of the
training targets. In Fig. 9 we present a scatter plot of the entries in the tables,
one loss versus the other, for each dataset.

Catalysis (Classification)

Method NLP 01L Author
Bayesian NN 0.2273 0.249 Neal, R
< Bayesian NN 0.2289 0.257 Neal, R
SVM + Platt 0.2305 0.259 Chapelle, O
> Bagged R-MLP 0.2391 0.276 Cawley, G
> Bayesian Logistic Regression 0.2401 0.274 Neal, R
Feat Sel + Rnd Subsp + Dec Trees 0.2410 0.271 Chawla, N
Probing SVM 0.2454 0.270 Zadrozny, B & Langford, J
baseline: class frequencies 0.2940 0.409

(NLP: average negative log probability, 01L: average zero-one loss)

The winner was Radford Neal with Bayesian Neural Networks. Radford Neal
also produced the second best entry, with the same model but learning only
from the training targets during the “validation” part of the Challenge, there-
fore not benefitting from the validation targets. The third best submission is
a support vector machine by Olivier Chapelle, that used Platt scaling (Platt,
1999) to produce calibrated probabilistic predictions. There is another sup-
port vector machine submission by Zadrozny and Langford, with lower rank-
ing, that used Probing (Langford and Zadrozny, 2005) to obtain probabilistic
predictions. Cawley’s post-Challenge submission based on neural networks uses
Bagging (Breiman, 1996) instead of Bayesian averaging. Bayesian logistic regres-
sion, a post-Challenge submission by Radford Neal, outperforms Nitesh Chawla’s
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Fig. 9. Visualization of results, non-probabilistic loss vs. probabilistic loss. The circles
represent the participant’s entries, the square the baseline method that ignores the
inputs. Top (a-c): Regression, NLPD vs. nMSE. Outaouais is the dataset for which
both losses are most highly correlated. For Stereopsis, the entry with lowest NLPD
has the highest nMSE, and for Gaze there are a number of submissions with very low
nMSE that have a very high NLPD: this might be due to the outliers present in this
dataset. Bottom (d-e): Classification, NLP vs. 0/1 Loss. While for Catalysis both losses
seem correlated, for Gatineau the 0/1 Loss is vacuous, and the only informative loss is
really the NLP.



20 J. Quiñonero-Candela et al.

decision trees, which won the Gatineau dataset. This might be an indication
that the performance of these methods is quite dataset dependent.

Gatineau (Classification)

Method NLP 01L Author
Feat Sel + Rnd subsp + Dec Trees 0.1192 0.087 Chawla, N
Feat Sel + Bagging + Dec Trees 0.1193 0.089 Chawla, N
Bayesian NN 0.1202 0.087 Neal, R
< Bayesian NN 0.1203 0.087 Neal, R
Simple ANN Ensemble 0.1213 0.088 Ohlsson, M
EDWIN 0.1213 0.087 Eisele, A
> Bayesian Logistic Regression 0.1216 0.088 Neal, R
> ANN with L1 penalty 0.1217 0.087 Delalleau, O
> CCR-MLP 0.1228 0.086 Cawley, G
Rnd Subsp + Dec Trees 0.1228 0.087 Chawla, N
Bagging + Dec Trees 0.1229 0.087 Chawla, N
> R-MLP 0.1236 0.087 Cawley, G
Probing J48 0.1243 0.087 Zadrozny, B & Langford, J
> Bagged R-MLP (small) 0.1244 0.087 Cawley, G
SVM + Platt 0.1249 0.087 Chapelle, O
baseline: class frequencies 0.1314 0.087

(NLP: average negative log probability, 01L: average zero-one loss)

The 0/1 loss is not informative for the Gatineau dataset: under this loss,
none of the methods beats a baseline classifier that always predicts class ‘-
1’. The dataset is very unbalanced, with about only 9% examples from the
less frequent class ‘+1’, which lead most methods to also classify all test ex-
amples as members of class ‘-1’. In this situation probabilistic predictions be-
come of great importance. The contestants managed to perform significantly
better than the baseline classifier, which outputs a probability of belonging
to class ‘+1’ of 0.087, independently of the input. This probability is equal
to the empirical class frequency. The two winning entries, by Nitesh Chawla,
correspond to decision trees with feature selection and averaging. For the win-
ner entry averaging consists in randomly sub-sampling the feature space, and
for the second best entry in Bagging. Interestingly both ensemble methods
give very similar performance. Feature selection appears to be decisive for im-
proving the performance of the decision trees used, as can be seen from the
decision tree entries without feature selection. Radford Neal’s Bayesian Neu-
ral Network achieved the 3rd and 4th best results, when trained on train-
ing and validation, and training targets only respectively. Other Neural Net-
works are represented, in Delalleau and Cawley’s post-Challenge entries. Inter-
estingly, SVMs with Platt scaling perform much worse on this dataset than on
Catalysis.
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Stereopsis (Regression)

Method NLPD nMSE Author
Mixture of Bayesian Neural Nets -2.077 2.38e-3 Snelson & Murray
Compet Assoc Nets + Cross Val -0.669 1.39e-6 Kurogi, S et al
> Mixt of LOOHKRR Machines -0.402 3.86e-4 Cawley, G
> Gaussian Process Regression -0.351 8.25e-5 Chapelle, O
> Inflated Var MLP Committee 0.309 9.59e-5 Cawley, G
KRR + Regression on the variance 0.342 9.60e-5 Chapelle, O
< Hybrid: Neural Net 0.940 1.52e-4 Lewandowski, A
Mixture Density Network Ensemble 1.171 2.62e-4 Carney, M
baseline: empirical Gaussian 4.94 1.002
Modelling the experimental setting 209.4 2.49e-4 Kohonen & Suomela

(NPLD: negative log predictive density, nMSE: normalized mean squared error)

The winning entry, by Snelson and Murray, had the worst nMSE loss. How-
ever, this entry achieved the lowest NLPD by providing multi-modal predictive
distributions, which is a natural choice given the clustered nature of the outputs,
see Fig. 8. The entry by Kohonen and Suomela scored extremely low under the
NLPD loss with unimodal Gaussian predictive distributions, with too small vari-
ances. As detailed in their chapter, this might not be a problem as long as the
prediction falls within the right cluster. However, a single prediction that fell
in the wrong cluster blew the NLPD loss. Excluding that case, Kohonen and
Suomela’s entry would have ranked first in Stereopsis. In their chapter, Koho-
nen and Suomela discuss the appropriateness of the NLPD loss. The second
best entry, competitive associative networks, achieved a nMSE loss an order of
magnitude smaller than the second best. It did not win because it provided
under-confident unimodal, Gaussian predictive distributions. Mixtures of leave-
one-out heteroscedastic kernel ridge regressors (LOOHKRR) (post-Challenge)
was third, with unimodal Gaussian predictive distributions as well.

Gaze (Regression)

Method NLPD nMSE Author
Compet Assoc Nets + Cross Val -3.907 0.032 Kurogi, S et al
LLR Regr + Resid Regr + Int Spikes 2.750 0.374 Kohonen & Suomela
> LOOHKRR 5.180 0.033 Cawley, G
> Heteroscedastic MLP Committee 5.248 0.034 Cawley, G
Gaussian Process regression 5.250 0.675 Csató, L
KRR + Regression on the variance 5.395 0.050 Chapelle, O
< Neural Net 5.444 0.029 Lewandowski, A
Rand Forest with OB enhancement 5.445 0.060 Van Matre, B
NeuralBAG and EANN 5.558 0.074 Carney, M
Mixture Density Network Ensemble 5.761 0.089 Carney, M
baseline: empirical Gaussian 6.91 1.002
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The winners, Kurogi et al. with competitive associative networks, achieved a
NLPD loss spectacularly lower than that of the second best entry. The authors
took advantage of a flaw of the NLPD loss for this dataset. Indeed, the out-
puts of the Gaze dataset take discrete values. Kurogi et al. provided predictive
distributions by means of quantiles, to specify predictive histograms with one
bin around each discrete output level. By making the bins small enough, any ar-
bitrarily low value of the NLPD can be achieved. This inappropriateness of the
NLPD loss for discrete-valued regression problems was also exploited by the sec-
ond best entry, although to a lesser extent. More details are given in the chapter
contributed by Kohonen and Suomela. The remaining entries did not abuse the
NLPD loss. The lowest nMSE loss was achieved by Lewandowski with a neural
network to estimate the predictive mean, and another network to estimate the
predictive variance. This entry did not achieve excellent predictive uncertainties.
It must be noted though, that it did only used the training targets, and not vali-
dation targets, for training. The best entry during made before the deadline, that
did not abuse the NLPD loss was a Gaussian process by Lehel Csató. Leave-one-
out heteroscedastic kernel ridge regression (LOHKRR), a post-Challenge submis-
sion, ranked third. This submission provided Gaussian predictive distributions,
with one regressor to model the mean, and another to model the variance. A
committee of multi-layer perceptrons, also post-Challenge, ranked fourth.

Outaouais (Regression)

Method NLPD nMSE Author
> Sparse GP method -1.037 0.014 Keerthi & Chu
> Gaussian Process regression -0.921 0.017 Chu, Wei
Classification + Nearest Neighbour -0.880 0.056 Kohonen, J
Compet Assoc Nets + Cross Val -0.648 0.038 Kurogi S et al
> Small Heteroscedastic MLP -0.230 0.201 Cawley, G
Gaussian Process regression 0.090 0.158 Csató, L
Mixture Density Network Ensemble 0.199 0.278 Carney, M
NeuralBAG and EANN 0.505 0.270 Carney, M
baseline: empirical Gaussian 1.115 1.000

The winning entry before the deadline, by Kohonen and Suomela, was not
achieved by any conventional Machine Learning “black box” method, but rather
by a “data-mining” approach. Nearest neighbours were used to make predic-
tions. The input space was divided into clusters, and a cluster dependent dis-
tribution of the outputs was empirically estimated, for each cluster. Test pre-
dictive distributions were subsequently obtained by attributing the test input
to one of the clusters. Kohonen and Suomela won in spite of not having the
best nMSE score. Competitive associative networks ranked second, achieving
the lowest nMSE loss before the submission deadline. It is interesting to see
that two post-Challenge submissions outperform all the rest both in terms of
nMSE and NLPD loss. These two submissions are based on Gaussian Processes:
the winning entry managed to use the entire training set thanks to a sparse
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approximation, while the second used a full GP trained only on a subset of the
training data.

7 Presentation of the Invited Chapters

This volume includes six additional contributed chapters, written by participants
who achieved outstanding results in the Evaluating Predictive Uncertainty Chal-
lenge. All dataset winners and seconds are represented, as well as the authors
of some of the post-Challenge submissions. There is high variety in the meth-
ods used. In classification, neural networks are used with Bayesian averaging
by Radford Neal, and with Bagging by Gavin Cawley. Decision trees are used
with Bagging and with random sub-samples of the inputs by Nitesh Chawla.
Support vector machines and Gaussian Processes are used by Olivier Chapelle.
In regression neural networks are used with Bayesian averaging by Ed Snelson
and Iain Murray, and as committees by Gavin Cawley. Competitive associative
networks with cross-validation, which can be seen as a gating network of local
experts, are used by Shuichi Kurogi, Miho Sawa and Shinya Tanaka. Kernel
methods are represented as Gaussian processes, in Olivier Chapelle’s submis-
sion, and as heteroscedastic leave-one-out kernel ridge regression on the mean
and on the variance by Gavin Cawley. Datamining is used in Jukka Kohonen’s
submission to the Outaouais dataset, where he used nearest neighbours together
with a gating classifier. Jukka Kohonen and Jukka Suomela do also provide the
single submission that was not made using a “black box” model: for Stereop-
sis, they deduce from the name of the dataset the physical underlying model of
two cameras looking at one object. In their chapter, Jukka Suomela and Jukka
Kohonen additionally provide with a discussion on the kind of losses that seem
appropriate for evaluating probabilistic predictions.

The contributed Chapters are, in order of appearance in this volume:

Bayesian Neural Networks
Radford M. Neal

The author describes his use of Bayesian neural networks for the Catalysis and
Gatineau datasets. Use was made of the author’s publicly available3 Flexible
Bayesian Modelling (FBM) software. Since no information was revealed about
the datasets at the time of the competition, the author decided to use vague pri-
ors with a complex neural network architecture. The author describes how model
complexity is automatically adjusted through Bayesian averaging. In addition,
the author comments on his post-Challenge entry, based on Bayesian logistic
regression, which achieved a fair performance.

A Pragmatic Bayesian Approach to Predictive Uncertainty
Iain Murray and Ed Snelson

The authors explain how they used a Bayesian approach tailored to the Stereop-
sis dataset. First, a probabilistic classifier based on Radford Neal’s FBM software
3 http://www.cs.utoronto.ca/∼radford/fbm.software.html
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serves as a soft gating network, that allows the combination of a mixture of local
regression experts, each trained on a cluster of the Stereopsis outputs, see Fig. 8.

Decision Trees with Feature Selection and Random Subspaces
Nitesh V. Chawla

The author first explains why decision trees are not suited for probabilistic
classification when used directly, nor when used with over-simplistic smoothing
schemes such as Laplace or m-estimates. He then argues that ensemble methods
allow to obtain large improvements in the predictive probabilities from decision
trees. He discusses the use of two ensemble methods: random subsets and Bag-
ging. The author also points out the importance that feature selection had for
his good results. Finally, a discussion is given on how to improve performance
on highly unbalanced datasets, such as Gatineau.

Heteroscedastic Kernel Regression Methods
Gavin Cawley, Nicola Talbot and Olivier Chapelle

The approach proposed in this work is to directly model the predictive distribu-
tion. For regression, a Gaussian predictive distribution is chosen. Its mean and
variance are explicitly modelled separately by kernel ridge regression, and learn-
ing is achieved by assuming that the loss is the NLPD, and directly minimizing
it. A leave-one-out scheme is used to avoid biased variance estimates.

Competitive Associative Nets and Cross-Validation for Estimating
Predictive Uncertainty on Regression Problems
Shuichi Kurogi, Miho Sawa and Shinya Tanaka

Competitive associative nets (CANs) are presented. These are piece-wise linear
approximations to non-linear functions. The input space is divided into a Voronoi
tessellation, with a linear model associated to each region. For the Stereopsis and
Outaouais datasets, Gaussian predictive distributions were provided, where the
means were directly obtained from CANs trained to minimize the leave-one-out
mean squared error. The variances were then estimated within the Voronoi re-
gions by means of K-fold cross-validation. For the Gaze dataset, the authors
took advantage of the discrete outputs to abuse the NLPD. The authors speci-
fied the predictive distribution by means of quantiles, and concentrated all the
mass around tiny intervals centered around the integer output values.

Lessons Learned in the Challenge: Making Predictions and Scoring
Them
Jukka Suomela and Jukka Kohonen

The authors present their winning entry for the Outaouais dataset: a pragmatic
data-mining approach, based on a gating classifier followed by nearest neighbour
regression. They also explain how they abused the NLPD loss on the discrete
outputs Gaze dataset, in a similar but less extreme way than Kurogi et al. This
motivates a very important discussion by the authors, on the more general prob-
lem of defining good losses for evaluating probabilistic predictions in regression.
The authors propose to use of the continuous ranked probability score (CRPS),
which does not suffer from the disadvantages of the NLPD loss.
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8 Discussion

The wealth of methods successfully used by the participants to the Challenge
indicates that there was not a single universally good way of producing good
predictive uncertainties. However, averaging was common in many of the best
submissions, see Fig. 10 for a qualitative impression in classification. Both classi-
fication winners used averaging: Radford Neal used Bayesian averaging of neural
networks, and Nitesh Chawla decision trees averaged over random subsets of
the inputs. Chawla’s bagged decision trees achieved second position. In regres-
sion, averaging was used by the winning entry for the Stereopsis dataset with a
Bayesian mixture of neural networks. Other successful entries for regression that
used averaging include mixtures of kernel ridge regressors, bagged multi-layer
perceptrons (MLPs) and committees of MLPs. Leave-one-out cross-validation
was also found in many successful entries. It was used for example by Kurogi,
Sawa and Tanaka with competitive associative networks (CANs), and by Cawley,
Talbot and Chapelle with kernel ridge regression.

In terms of architectures, neural networks had a strong presence, and generally
achieved very good results. Other architectures, like decision trees, Gaussian
Processes and support vector machines also gave good results. Interestingly, an
approach from datamining by Jukka Kohonen won the Outaouais regression
dataset, later outperformed by two post-Challenge Gaussian Processes entries.

The Challenge revealed a difficulty inherent to measuring in general. While
the goal was to evaluate “honest” predictive uncertainties, in practice the loss
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Fig. 10. Qualitative display of some classification results: 0/1 loss (average error rate)
versus Negative Log Probability (NLP). Whenever averaging was used, the kind of
averaging is indicated between brackets.
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biased the predictive distributions of the participants. An example of this is the
approach of Cawley, Talbot and Chapelle for regression, consisting in providing
Gaussian predictive distributions tuned to minimize the NLPD loss. The authors
would certainly have provided a different predictive distribution, if a different
loss had been used.

The use of the NLPD loss turned out to be clearly inappropriate for the
Gaze dataset. The outputs of this dataset take values from a finite discrete
set. This encourages a simple strategy to achieve an arbitrarily small loss (the
NLPD is unbounded from below). It is enough to specify a predictive his-
togram, with one bin encompassing each output discrete value. Making the bins
narrow enough allows to arbitrarily increase the amount of probability den-
sity on the targets, and to therefore attain any arbitrarily small value of the
NLPD, the being machine precision. This inadequacy of the NLPD for the Gaze
dataset was exploited by two groups of participants, Kurogi, Sawa and Tanaka,
and Snelson and Murray, who achieved respectively the best and second best
results.

We have seen that the accuracy according to a point-prediction-based loss
does not always give the same ranking as a loss which takes uncertainties into
account, and that for some datasets like Gatineau, only the loss that evaluates
probabilistic predictions is useful. However, it seems that defining good losses for
probabilistic predictions is hard, since the losses might encourage strategies that
are loss-dependent Maybe one way of encouraging unbiased and “honest” predic-
tive distributions would be to apply several losses that encourage contradictory
strategies. Another way could be not to reveal the loss under which predictions
will be evaluated.

It would have been very interesting to empirically evaluate in this challenge a
very recent paradigm for probabilistic predictions, based on “conformal predic-
tions” (Vovk, Gammerman and Shafer, 2005).Conformal predictors are capable
of producing accurate and reliable point predictions, while providing information
about their own accuracy and reliability. This work was unfortunately published
after the closing deadline of the Evaluating Predictive Uncertainty Challenge.
Perhaps future competitions will allow to evaluate its practical utility.
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