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Abstract. We compare two approaches to the problem of estimating
the depth of a point in space from observing its image position in two
different cameras: 1. The classical photogrammetric approach explicitly
models the two cameras and estimates their intrinsic and extrinsic pa-
rameters using a tedious calibration procedure; 2. A generic machine
learning approach where the mapping from image to spatial coordinates
is directly approximated by a Gaussian Process regression. Our results
show that the generic learning approach, in addition to simplifying the
procedure of calibration, can lead to higher depth accuracies than clas-
sical calibration although no specific domain knowledge is used.

1 Introduction

Inferring the three-dimensional structure of a scene from a pair of stereo images
is one of the principal problems in computer vision. The position X = (X, Y, Z)
of a point in space is related to its image at x = (x, y) by the equations of
perspective projection

x = x0 − sxyc · r11(X −X0) + r21(Y − Y0) + r31(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)

+ Ξx(x) (1)

y = y0 − c · r12(X −X0) + r22(Y − Y0) + r32(Z − Z0)
r13(X −X0) + r23(Y − Y0) + r33(Z − Z0)

+ Ξy(x) (2)

where x0 = (x0, y0) denotes the image coordinates of the principal point of the
camera, c the focal length, X0 = (X0, Y0, Z0) the 3D-position of the camera’s
optical center with respect to the reference frame, and rij the coefficients of a
3× 3 rotation matrix R describing the orientation of the camera. The factor sxy

accounts for the difference in pixel width and height of the images, the 2-D-vector
field Ξ(x) for the lens distortions.

The classical approach to stereo vision requires a calibration procedure before
the projection equations can be inverted to obtain spatial position, i.e., estimat-
ing the extrinsic (X0 and R) and intrinsic (x0, c, sxy and Ξ) parameters of each
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camera from a set of points with known spatial position and their corresponding
image positions. This is normally done by repeatedly linearizing the projection
equations and applying a standard least square estimator to obtain an itera-
tively refined estimate of the camera parameters [1]. This approach neglects the
nonlinear nature of the problem, which causes that its convergence critically de-
pends on the choice of the initial values for the parameters. Moreover, the right
choice of the initial values and the proper setup of the models can be a tedious
procedure.

The presence of observations and desired target values on the other hand,
makes depth estimation suitable for the application of nonlinear supervised learn-
ing algorithms such as Gaussian Process Regression. This algorithm does not re-
quire any specific domain knowledge and provides a direct solution to nonlinear
estimation problems. Here, we investigate whether such a machine learning ap-
proach can reach a comparable performance to classical camera calibration. This
can lead to a considerable simplification in practical depth estimation problems
as off-the-shelf algorithms can be used without specific adaptations to the setup
of the stereo problem at hand.

2 Classical Camera Calibration

As described above, the image coordinates of a point are related to the cameras
parameters and its spatial position by a nonlinear function F (see Eqs. 1 and 2)

x = F(x0, c, sxy, R,X0, Ξ,X) (3)

The estimation of parameters is done by a procedure called bundle adjustment
which consists of iteratively linearizing the camera model in parameter space and
estimating an improvement for the parameter from the error on a set of m known
pairs of image coordinates xi = (xi, yi) and spatial coordinates Xi = (Xi, Yi, Zi).
These can be obtained from an object with a distinct number of points whose
coordinates with respect to some reference frame are known with high precision
such as, for instance, a calibration rig.

Before this can be done, we need to choose a low-dimensional parameteri-
zation of the lens distortion field Ξ because otherwise the equation system 3
for the points 1 . . .m would be underdetermined. Here, we model the x- and y-
component of Ξ as a weighted sum over products of one-dimensional Chebychev
polynomials Ti in x and y, where i indicates the degree of the polynomial

Ξx(x) =
t∑

i,j=0

aijTi(sxx)Tj(syy), Ξy(x) =
t∑

i,j=0

bijTi(sxx)Tj(syy), (4)

The factors sx, sy scale the image coordinates to the Chebychev polynomials’
domain [−1, 1]. In the following, we denote the vector of the complete set of
camera parameters by θ = (x0, c, sxy, R,X0, a11, . . . , att, b11, . . . , btt).

In the iterative bundle adjustment procedure, we assume we have a parameter
estimate θn−1 from the previous iteration. The residual li of point i for the
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camera model from the previous iteration is then given by

li = xi − F(θn−1,Xi). (5)

This equation system is linearized by computing the Jacobian J (θn−1) of F at
θn−1 such that we obtain

l ≈ J (θn−1)∆θ (6)

where l is the concatenation of all li and ∆θ is the estimation error in θ that
causes the residuals. Usually, one assumes a prior covariance Σll on l describing
the inaccuracies in the image position measurements. ∆θ is then obtained from
a standard linear estimator [3]

∆θ = (J>Σ−1
ll J )−1JΣ−1

ll l . (7)

Finally, the new parameter estimate θn for iteration n is improved according to
θn = θn−1 + ∆θ. Bundle adjustment needs a good initial estimate θ0 for the
camera parameters in order to ensure that the iterations converge to the correct
solution. There exists a great variety of procedures for obtaining initial estimates
which have to be specifically chosen for the application (e.g. aerial or near-range
photogrammetry).

The quality of the estimation can still be improved by modelling uncertain-
ties in the spatial observations Xi. This can be done by including all spatial
observations in the parameter set and updating them in the same manner which
requires the additional choice of the covariance ΣXX of the measurements of
spatial position [1]. ΣXX regulates the tradeoff between the trust in the accu-
racy of the image observations on the one hand and the spatial observations on
the other hand. For more detailed information on bundle adjustment please refer
to [1].

Once the parameter sets θ(1) and θ(2) of the two camera models are known,
the spatial position X∗ of a newly observed image point (x∗1 in the first and x∗2
in the second camera) can be estimated using the same technique. Again, F de-
scribes the stereo camera’s mapping from spatial to image coordinates according
to Eqns. 1 and 2

x∗k = F(θ(k),X∗), k = 1, 2 (8)

but this time the θ are kept fixed and the bundle adjustment is computed for
estimates of X∗ [1].

3 Gaussian Process Regression

The machine learning algorithm used in our study assumes that the data are
generated by a Gaussian Process (GP). Let us call f(x) the non-linear func-
tion that maps the D-dimensional input x to a 1-dimensional output. Given
an arbitrary set of inputs {xi|i = 1, . . . , m}, the joint prior distribution of the
corresponding function evaluations f = [f(x1), . . . , f(xm)]> is jointly Gaussian:

p(f |x1, . . . ,xm, θ) ∼ N (0,K) , (9)
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with zero mean (a common and arbitrary choice) and covariance matrix K.
The elements of K are computed from a parameterized covariance function,
Kij = k(xi,xj , θ), where θ now represents the GP parameters. In Sect. 4 we
present the two covariance functions we used in our experiments.

We assume that the output observations yi differ from the corresponding
function evaluations f(xi) by Gaussian additive i.i.d. noise of mean zero and
variance σ2. For simplicity in the notation, we absorb σ2 in the set of parameters
θ. Consider now that we have observed the targets y = [y1, . . . , ym] associated to
our arbitrary set of m inputs, and would like to infer the predictive distribution
of the unknown target y∗ associated to a new input x∗. First we write the joint
distribution of all targets considered, easily obtained from the definition of the
prior and of the noise model:

p

([
y
y∗

]∣∣∣∣x1, . . . ,xm, θ

)
∼ N

(
0,

[
K + σ2 I k∗

k>∗ k(x∗,x∗) + σ2

])
, (10)

where k∗ = [k(x∗,x1), . . . , k(x∗,xm)]> is the covariance between y∗ and y, and
I is the identity matrix. The predictive distribution is then obtained by condi-
tioning on the observed outputs y. It is Gaussian:

p(y∗|y,x1, . . . ,xm, θ) ∼ N (m(x∗), v(x∗)) , (11)

with mean and variance given respectively by:

m(x∗) = k>∗ [K + σ2 I]−1y ,

v(x∗) = σ2 + k(x∗,x∗)− k>∗ [K + σ2 I]−1k∗ .
(12)

Given our assumptions about the noise, the mean of the predictive distribution
of f(x∗) is also equal to m(x∗), and it is the optimal point estimate of f(x∗). It
is interesting to notice that the prediction equation given by m(x∗) is identical
to the one used in Kernel Ridge Regression (KRR) [2]. However, GPs differ from
KRR in that they provide full predictive distributions.

One way of learning the parameters θ of the GP is by maximizing the evidence
of the observed targets y (or marginal likelihood of the parameters θ). In practice,
we equivalently minimize the negative log evidence, given by:

− log p(y|x1, . . . ,x1, θ) =
1
2

log |K + σ2 I|+ 1
2
y>[K + σ2 I]−1y . (13)

Minimization is achieved by taking derivatives and using conjugate gradients.
An alternative way of inferring θ is to use a Bayesian variant of the leave-one-
out error (GPP, Geisser’s surrogate predictive probability, [4]). In our study we
will use both methods, choosing the most appropriate one for each of our two
covariance functions. More details are provided in Sect. 4.

4 Experiments

Dataset. We used a robot manipulator holding a calibration target with a flat-
tened LED to record the data items. The target was moved in planes of different
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Fig. 1. Robot arm and calibration target, which were used to record the data items.

depths, perpendicular to the axis of the stereo setup. The spatial position of the
LED was determined from the position encoders of the robot arm with a nomi-
nal positioning accuracy of 0.01mm. The center of the LED was detected using
several image processing steps. First, a threshold operation using the upper 0.01
percentile of the image’s gray-scale values predetected the LED. Then a two-
dimensional spline was fitted through a window around the image of the LED
with an approximate size of 20px. A Sobel operator was used as edge detector on
the spline and a Zhou operator located the LED center with high accuracy (see
[1]). We recorded 992 pairs of spatial and image positions, 200 of which were
randomly selected as training set. The remaining 792 were used as test set.

Classical calibration. During bundle adjustment, several camera parameters
were highly correlated with others. Small variations of these parameters pro-
duced nearly the same variation of the function values of F, which lead to a lin-
ear dependency of the columns of J and thus to a rank deficiency of J>Σ−1

ll J .
Therefore, the parameters of a correlating pair could not be determined prop-
erly. The usual way to deal with this problem is to exclude one of the correlating
parameters from the estimation. As both the principal point x0 and the coeffi-
cients a00, b00 highly correlated with camera yaw and pitch, we assumed them to
be zero and excluded them from estimation. Furthermore a10, b01, a12 and b21

were excluded because of their correlation with sxy and c. As the combination
a01 = −b10 showed a high correlation with the roll angle of the camera, the pa-
rameter a01 was not estimated and its value was set to b01. The correlations of
a20 and a02 with camera yaw resp. b20 and b02 with camera pitch were removed
by setting a20 to b02 and a02 to b20. Higher degree polynomials in the parameter-
ization of the lens distortion field induce vector fields too complex to correlate
with other parameters of the camera such that none had to be switched off due to
correlations (see [6] for more detailed information on the parameterization of the
camera model). We used a ten-fold crossvalidation scheme to determine whether
the corresponding coefficients should be included in the model or not. The er-
ror in the image coordinates was assumed to be conditionally independent with
σ2 = 0.25px, so the covariance matrix Σll became diagonal with Σll = 0.25 · I.



6 F. Sinz, J. Quiñonero Candela, G. Bakır, C. E. Rasmussen, M. O. Franz

The same assumption was made for ΣXX , though the value of the diagonal
elements was chosen by a ten fold cross validation.

Gaussian Process Regression. For the machine learning approach we used both
the inhomogeneous polynomial kernel

k(x, x′) = σ2
ν 〈x, x′ + 1〉g (14)

of degree g and the squared exponential kernel

k(x, x′) = σ2
ν exp

(
−1

2

D∑

d=1

1
λ2

d

(xd − x′d)
2

)
. (15)

with automatic relevance determination (ARD). Indeed, the lengthscales λd can
grow to eliminate the contribution of any irrelevant input dimension.

The parameters σ2
ν , σ2 and g of the polynomial covariance function were es-

timated by maximizing the GPP criterion [4]. The parameters σ2
ν , σ2 and the λd

of the squared exponential kernel were estimated by maximizing their marginal
log likelihood [5]. In both cases, we used the conjugate gradient algorithm as
optimization method.

We used two different types of preprocessing in the experiments: 1. Scaling
each dimension of the input data to the interval [−1, 1]; 2. Transforming the
input data according to

(x1, y1, x2, y2) 7→
(

1
2
(x1 − x2),

1
2
(x1 + x2),

1
2
(y1 − y2),

1
2
(y1 + y2)

)
. (16)

The output data was centered for training.

5 Results

The cross validation for the camera model yielded σX = 2mm as best a priori
estimation for the standard deviation of the spatial coordinates. In the same
way, a maximal degree of t = 3 for the Chebychev polynomials was found to be
optimal for the estimation of the lens distortion. Table 1 shows the test errors
of the different algorithms and preprocessing methods.

All algorithms achieved error values under one millimeter. Gaussian Pro-
cess regression with both kernels showed a superior performance to the classical
approach. Fig. 5 shows the position error according to the test points actual
depth and according to the image coordinates distance to the lens center, the so
called excentricity. One can see that the depth error increases nonlinearly with
increasing spatial distance to the camera. Calculation of errors shows that the
depth error grows quadratically with the image position error, so this behaviour
is expected and indicates the sanity of the learned model. Another hint that all
of the used algorithms are able to model the lens distortions is the absence of a
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Table 1. Test error for bundle adjustment and Gaussian Process Regression with
various kernels, computed on a set of 792 data items. Root mean squared error of the
spatial residua was used as error measure.

Method Test Error Preprocessing

Bundle adjustment 0.38mm -
Inhomogeneous polynomial 0.29mm scaled input
Inhomogeneous polynomial 0.28mm transformed, scaled input
Squared exponential 0.31mm scaled input
Squared exponential 0.27mm transformed, scaled input

trend in the right figure. Again, the learning algorithms do better and show a
smaller error for almost all excentricities.

The superiority of the squared exponential kernel to the polynomial can be
explained by its ability to assign different length scales to different dimensions of
the data and therefore set higher weights on more important dimensions. In our
experiments 1

λ2
1

and 1
λ2

3
were always approximately five times larger than 1

λ2
2

and
1
λ2

4
, which is consistent with the underlying physical process, where the depth of

a point is computed by the disparity in the x-direction of the image coordinates.
The same phenomenon could be observed for the transformed inputs, where
higher weights where assigned to the x1 and x2.

6 Discussion

We applied Gaussian Process Regression to the problem of estimating the spatial
position of a point from its coordinates in two different images and compared its
performance to the classical camera calibration. Our results show that the generic
learning algorithms performed better although maximal physical knowledge was
used in the explicit stereo camera modelling.
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Fig. 2. Position error depending on the actual depth of the test point (left figure) and
on the distance to the lens center, the so called excentricity (right figure).
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An additional advantage of our approach is the mechanical and therefore
simple way of model selection, while the correct parametrization of a camera
model and elimination of correlating terms is a painful and tedious procedure.
Moreover the convergence of the regression process does not depend on good
starting values like the estimation of the camera model’s parameters does.

A disadvantage of the machine learning approach is that it does not give
meaningful parameters such as position and orientation in space or the camera’s
focal length. Moreover, it does not take into account situations where the exact
spatial positions of the training examples are unknown, whereas classical camera
calibration allows for an improvement of the spatial position in the training
process.

The time complexity for all algorithms is O(m3) for training and O(n) for
the computation of the predictions, where m denotes the number of training
examples and n the number of test examples. In both training procedures, ma-
trices with a size in the order of the number of training examples have to be
inverted at each iteration step. So the actual time needed also depends on the
number of iteration steps, which scale with the number of parameters and can
be assumed constant for this application. Without improving the spatial coordi-
nates, the time complexity for the training of the camera model would be O(p3),
where p denotes the number of parameters. But since were are also updating the
spatial observations, the number of parameters is upper bounded by a multiple
of the number of training examples such that the matrix inversion in (7) is in
O(m3). An additional advantage of GP is the amount of time actually needed
for computing the predictions. Although predicting new spatial points is in O(n)
for GP and the camera model, predictions with the camera model always con-
sume more time. This is due to the improvements of the initial prediction with
a linear estimator which again is an iterative procedure involving an inversion
of a matrix of constant size at each step.
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