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Abstract

Sparse Bayesian learning suffers from impractical, overconfident predictions
where the uncertainty tends to be maximal around the observations. We propose
an alternative treatment that breaks the rigidity of the implied prior through
decorrelation, and consequently gives reasonable and intuitive error bars. The
attractive computational efficiency is retained; learning leads to sparse solu-
tions. An interesting by-product is the ability to model non-stationarity and
input-dependent noise.

1 Sparse Bayesian learning

Finite linear regression models are attractive for computational reasons and
because they are easily interpreted. In these models, the regression function is
simply a weighted linear sum of M basis functions φ1(x), . . . , φM(x):

f(x) =
M∑

m=1

wmφm(x) = w>φ(x) , (1)

where x is a (vectorial) input. A popular Bayesian treatment is the rele-
vance vector machine (RVM) [1] in which a Gaussian prior is placed on the
weights: p(w) = N (0, A), where A is a diagonal matrix of variance parameters
a1, . . . , aM . The observed outputs y are assumed to be corrupted by Gaussian
white noise of variance σ2 from the underlying regression function f(x). There-
fore, given a data set of N input-output pairs (x1, y1), . . . , (xN , yN), we can
compute the Gaussian posterior distribution on the weights p(w|y) and make
a Gaussian prediction at a new point x∗: p(y∗|x∗,y). We give the prediction
equations in appendix A. In the RVM model it is customary to use localized
basis functions centered on the training inputs. The model evidence p(y|A)
is maximized to learn the variances of the weights A. An attractive property
of the RVM is that most of which tend to zero, effectively pruning the corre-
sponding basis functions (for an explanation see [2]). The result is a sparse, and
hence computationally efficient, linear model with M � N . The combination
of a finite linear model with sparsity inducing priors on the weights is known as
the Sparse Bayesian learning framework, and was inspired by the principle of
automatic relevance determination (ARD) [3, 4].

As a Bayesian regression model, the RVM gives predictive distributions for
new inputs, i.e., it supplies error bars, however these uncertainties are often
unreasonable. This can be seen by examining the prior over functions given a
set of basis functions: figure 1a shows a few sample functions drawn from the
RVM prior given a small set of local (Gaussian) basis functions. Also shaded
is the prior variance envelope (2 standard deviations shown). We see that the
prior variance decays to zero away from basis function centres, and therefore
the sample functions all return to the mean (zero). Hence using an RVM prior
actually imposes strong constraints: the prior hypothesis space of functions
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does not include any functions that vary away from the basis functions. Figure
1b shows a small set of data, and plots the mean RVM prediction along with
the shaded predictive variance envelope having trained on this data. We see
that the predictive variances drop away from the data, because there was no
prior variance there. The behavior of the predictive variances is opposite to
that desired — the RVM is most certain about the function far away from any
observed data.

To better understand the limitations of the linear model above it is useful
to consider the prior induced on the function values at N data points f directly.
These have a zero mean Gaussian prior distribution, induced by the Gaussian
prior on the weights, with covariance matrix:

K = ΦNMAΦ>NM , (2)

where ΦNM is the design matrix ([ΦNM ]nm := φm(xn)). If there are more data
points than basis functions this is a low-rank covariance matrix of rank M . In
fact, the prior distribution on f(x) is properly described as a Gaussian process
(GP) (see e.g., [5]) with degenerate covariance function:

k(x,x′) = φ(x)>Aφ(x′) . (3)

Here, degenerate refers to the fact that any covariance matrix K formed from
the covariance function k(x,x′) will have maximum rank M . The prior variance
envelope as seen in figure 1a is given by the diagonal of the covariance function:

d(x) = k(x,x) =
M∑

m=1

amφ
2
m(x) , (4)

which decays to zero away from the support of the basis functions. A graphical
representation of the covariance matrix K for the same basis functions as in
figure 1a is shown in figure 2a.

Perhaps the most natural way to obtain sensible predictive variances is to use
a full non-parametric Gaussian process model with a non-degenerate covariance
function, such as the stationary Gaussian: k(x,x′) = exp(−|x−x′|2/λ2), which
has a constant diagonal. With this GP the prior variances are constant over
all space, and consequently the predictive variances have the desired behavior
— they grow large away from observed data. This can be seen as an infinite
linear model which places basis functions everywhere in input space. However,
by moving to a full GP the sparsity of the RVM model is lost, and hence its
computational advantage. A full GP costs N3 time for training due to inversion
of the covariance matrix, and the prediction cost per test case is N for the mean
and N2 for the variance. This is a major problem for larger data sets.

In [6], the predictive variances of the RVM are corrected by adding an extra
basis function at test time at the location of the test input. This provides
the necessary extra predictive uncertainty, but unfortunately comes with an
unacceptable extra prediction cost of NM per test case for both the mean and
variance, making it impractical for large data sets. The RVM costs only NM2
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for training, and M and M2 for the predictive mean and variance respectively.
We seek to obtain a more appropriate prior from a finite linear model without
incurring any additional computational cost.

2 Normalization

One way to achieve a constant prior variance is a normalization of the covariance
function:

k̃(x,x′) = c
k(x,x′)√

k(x,x)k(x′,x′)
= c

k(x,x′)√
d(x)d(x′)

. (5)

This is equivalent to a conformal transformation of the kernel k(x,x′) by the
factor 1/

√
d(x) [7] and it is easy to see that k̃ produces a constant variance

of c (its diagonal). Applying this normalization to the RVM covariance (3) is
equivalent to normalizing the basis functions:

φ̃m(x) = φm(x)/
√
d(x) . (6)

This is still therefore a finite linear model with M basis functions, however they
have different shapes. This normalized model has a constant prior variance by
construction, and so we might think that we have solved the problem of the
RVM’s unreasonable predictive variances.

Figure 1c shows the shapes of the normalized Gaussian basis functions along
with some sample draws from this normalized prior. The function samples are
no longer constrained to return to the mean away from basis function centers.
However the normalization had flattened the basis functions, introducing long-
term correlations away from their ‘centers’. The predictive distribution in figure
1d shows a very different behavior to the original RVM, but still not what
we wanted: the long-term correlations mean that the model is still extremely
confident far away from observed data. Figure 2b shows how the long-term
correlations appear as blocked regions of high covariance. Despite its constant
diagonal, the covariance matrix is still low rank.

This highlights an important point: the problem with the RVM predictive
variances is not due to the choice of local basis functions: however we change the
shape of the basis functions we still have the same pathology, as was observed
in [6]. The problem is fundamentally due to the finiteness of the model — the
low-rank degenerate nature of the covariance — which does not give enough
prior flexibility to functions; one can only draw at most M linearly independent
functions from the corresponding GP prior.

3 Decorrelation and normalization

We would like to have a constant prior variance, but not at the expense of
long-term correlations. We also want to preserve the computational sparsity of
the RVM as compared to an infinite non-parametric GP model. Essentially we
want the prior to decorrelate, but not decay, away from basis functions. To do
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(e) Decorrelation and normalization. The en-
velope of the normalized white noise pro-
cess is shown as the dashed line with the
basis functions.
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Figure 1: Left: samples from the prior, right: samples from the predictive
distribution for a small training set drawn from the RVM prior, given by the
crosses. Two standard deviation prior and predictive envelopes are shaded in
gray. The basis functions, including normalization where appropriate, are shown
above the prior plots. The parameters of the models are fixed to those of the
generating RVM prior — no learning is taking place.
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Figure 2: Covariance matrices. Dark areas indicate high covariance.

this we add a white noise Gaussian process w0(x) of constant variance a0 to the
linear model before normalization:

f(x) =
M∑

m=1

wmφm(x) + w0(x) . (7)

The covariance function and its diagonal are now given by

k(x,x′) = φ(x)>Aφ(x′) + a0δx,x′ and d(x) =
M∑

m=1

amφ
2
m(x) + a0 . (8)

Normalizing as above using (5) again gives a model with constant prior vari-
ance constituting a finite linear model with normalized basis functions plus a
modulated white noise Gaussian process:

f(x) =
√
c

[ M∑
m=1

wm
φm(x)√
d(x)

+ w0(x)
1√
d(x)

]
. (9)

The effect of this normalized white noise process can be seen in figure 1e, which
shows samples from the prior for a particular choice of a0. The basis functions
are flattened to a degree, but unlike the noiseless normalized solution, as we
move away from the basis function centers the white noise process takes over
and decorrelates the sample functions. The original constant variance white
noise process is normalized to have variance a0/d(x), which means it dominates
when the basis functions decay. Its envelope is shown as a dashed line with the
basis functions in figure 1e. The relative magnitude of a0 to A determines the
strength of the noise process relative to the basis functions. Figure 1f shows
predictions from the model, where we now observe the desired behavior of the
predictive variances which grow as we move away from data. Figure 2c illustrates
the new covariance matrix, with constant diagonal and reduced blocks of high
correlation.

By adding a weight function w0(x) to the model it might at first seem that
this implies the addition of infinitely many new basis functions, and potentially
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an increase in computational cost. However, since w0(x) is a white noise process,
no additional correlations are introduced in the model, and hence the compu-
tational cost remains the same as for the RVM. A way to see this is to look at
the covariance matrix:

K̃ = cD−
1
2KD−

1
2

= c[Φ̃NMAΦ̃>NM + a0D
−1] ,

(10)

where D = diag[d(x1), . . . , d(xN )] and Φ̃NM are the normalized basis functions.
This is no longer a low-rank covariance matrix, but rather a low-rank matrix plus
a diagonal. Crucially the inversion of this matrix (plus the measurement noise
σ2IN) can still be performed in NM2 time. Also the cost of the predictions
remains the same as a finite linear model: M for the mean and M2 for the
variance per test case. Just like in the RVM we learn parameters of the model
by maximizing the evidence p(y) using gradient ascent. Details of the prediction
equations and evidence are given in appendix A.

4 Sparse Gaussian processes

There is a strong relationship between our proposed solution to the RVM’s pre-
dictive variance problems and sparse Gaussian process approximations. Sparse
GP approximations start with a given covariance function, and seek to approxi-
mate this in order to reduce the N3 complexity of the full GP. For the purposes
of this paper will shall compare to the FITC approximation, as used by [8, 9]
and reviewed in [10]. The FITC approximation is based on a small set of M
support input points which determine the regions in which the approximation
is good. FITC is most easily summarized by its prior covariance matrix:

KFITC = KNMK
−1
MMK

>
NM + diag(KNN −KNMK

−1
MMK

>
NM) . (11)

Here KNM , KMM , and KNN are covariance matrices constructed from the original
covariance function to be approximated; N and M refer to the data points and
the support points respectively.

Comparing (11) to (10) we note some obvious similarities and differences.
They both consist of a low-rank matrix plus a diagonal, and hence if the number
of basis functions is equivalent to the number of support points their compu-
tational costs are the same. Further similarities are apparent if we also choose
the basis functions φ(x) to be Gaussian and the underlying covariance function
for FITC to be Gaussian i.e. KNM ≡ ΦNM . Now both cases consist of a similar
low-rank matrix which is ‘corrected’ to achieve a constant diagonal. In FITC
this correction is additive purely on the diagonal. In our new approach the
correction is divisive, and therefore alters the shapes of the basis functions too.
Due to the constant diagonal, FITC shows a decorrelation effect in its prior as
we move away from the FITC support points, similar to that shown in figure
1e.
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Figure 3: Predictions for Silverman’s motorcyle data set

There are a number of differences too. Our new construction allows us to
choose an arbitrary set of basis functions, not necessarily derived from any
kernel function, and normalize them to produce sensible priors. FITC requires
an underlying desired GP covariance function for its construction. Secondly,
just like in the original RVM, we can use the adjustable A variance parameters
to automatically prune out unnecessary basis functions, thereby finding a very
sparse solution. The number of support points in FITC must be set by hand.

A direct application of the FITC diagonal correction (11) to the linear model
is not possible, as the covariance matrix would no longer be guaranteed to be
positive definite.

5 A non-stationary heteroscedastic example

We tested our method on Silverman’s motorcycle data set [11]; accelerometer
readings as a function of time in a simulated impact experiment on motorcy-
cle crash helmets, with 133 recordings. This is a classic benchmark dataset
which exhibits both heteroscedastic (variable noise levels) and non-stationary
properties. Figure 3a shows the result. We used Gaussian basis functions
φm(x) = exp(−|x−xm|2/λ2), and learnt the parameters of the model (A, a0, c,
λ, σ2) by maximizing the evidence with gradient ascent as described in appendix
A. Initially there was a basis function centred on every data point, but as the
upper section of the plot shows, only a handful of significant basis functions
remain after training: learning A prunes almost all of them away leaving a very
sparse solution. Also note that the shapes of the remaining basis functions have
changed through normalization, adapting well to the non-stationary aspects of
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the data (for example the left-most flat section). Finally, the added noise pro-
cess is modulated such that it not only gives uncertain predictions away from
the data, but it also models very well the heteroscedastic noise in the data.
Although our model was designed to fix the RVM’s predictive variances, we find
that the normalization also models non-stationarity and heteroscedasticity.

Figure 3b shows the trained RVM’s predictions. Its noise level is constant,
and so it cannot model the heteroscedasticity, and its predictive variances do
not grow away from the data. A full GP with Gaussian covariance is shown in
figure 3c. Again it can only learn a single gobal noise-level, and so it is not a
good model for this data. Figure 3d shows the FITC sparse GP approximation,
where we use 8 support points, which is also learnt as in [9]. This model is
therefore of comparable sparsity to figure 3a. This is actually a better model
of heteroscedasticiy than the full GP, because it has a similar input-dependent
noise component as our new model. However it shows a tendency to overfit
slightly by ‘pinching in’ at the support points, and its underlying Gaussian
stationary covariance is too smooth to model the data well.

The motorycle data set has also been used to test other approaches to
non-stationary and/or heteroscedastic GP regression [12, 13]. In contrast to
the simple linear model discussed here, these approaches are computationally
much more expensive, involving infinite mixtures and requiring sampling. Het-
eroscedastic GP regression is also addressed in [14], and other non-stationary
GP covariance functions are discussed in [15], among others.

6 Real-time probabilistic visual tracking

An application in which both the sparsity of the RVM and meaningful proba-
bilistic predictions are important is visual tracking. In [16] a displacement expert
is created by training RVM regression to predict the true location of a target
object given an initial estimate of its position in an image. This uses the pixel
intensities sampled from the initial image region as (high dimensional) input
vectors and as a consequence evaluating a basis function is expensive. By prun-
ing many of the basis functions from the model, the RVM yields an extrememly
efficient tracker.

The Gaussian RVM displacement predictions can be fused with a dynami-
cal motion model over time with a Kalman filter, typically yielding improved
accuracy. However, when a target changes appearance significantly or becomes
occluded, the small variances predicted by the RVM corrupt the Kalman filter
estimate of the state and consequently the tracker fails (see the top row of figure
4).

The bottom row of figure 4 shows the displacement expert tracking a target
through an occlusion when the decorrelated and normalized linear model pro-
posed in this paper is used. When the tracked person is occluded by a tree, the
new model correctly makes predictions with a large variance which consequently
contribute very little to Kalman filter state updates, which instead relies on the
constant velocity dynamical model. Once the occlusion is over, the displace-
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Figure 4: Examples of tracking a target undergoing occlusion. Top row: Imple-
menting a displacement expert with a conventional RVM causes tracking to fail
with the target is temporarily occluded by a tree. Bottom: Implementing the
displacement expert with a decorrelated and normalized linear model provides
meaningful predictive uncertainties which permit the Kalman filter to fall back
on the dynamical prior during the occlusion.

ment expert is again able to make confident predictions and accurate tracking
resumes.

The same successful tracking performance could be achieved by using a full
GP, but this would come at a significantly higher computational cost, failing to
meet real-time requirements. The difficulty with using FITC — a sparse GP
approximation that produces sensible error bars — is that finding the inducing
inputs requires an optimization in a space that is here of very high dimension.

7 Discussion

Sparse finite linear models are impractical from a probabilistic point of view,
since independently of the type of basis functions used they tend to be overcon-
fident, particularly for predictions away from the observations. Samples from
the implied prior live in an at most M -dimensional function space; this severely
restricts the available posterior uncertainty.

By incorporating an infinite set of uncorrelated basis functions to the model,
we enrich the prior over functions. Normalization ensures a constant prior
variance, and introduces decorrelations. The rôle of the initial localized ba-
sis functions is now to introduce local correlations, that do not overconstrain
the posterior. The predictive variances increase away from the observed data,
in a similar fashion as for non-parametric non-degenerate GPs.

The new model can still be treated as a finite linear model and retains the
same propensity to sparsity as the RVM, with the corresponding computational
advantage. This is due to the fact that the new basis functions do not correlate
to anything, and the number of sources of correlation remains unchanged: M ,
the number of original basis functions. For large data sets, the computationally
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efficient inference schemes that have been devised for the RVM [17] can be used.
The new treatment of finite linear models proposed makes them suitable

for fitting non-stationary and heteroscedastic data. By individually varying the
ratio of the M prior variances A to the variance a0 of the uncorrelated process,
the model can both change the shape of the basis functions and the level of
input dependent noise.

8 Outlook

Although we have this far normalized assuming that the desired prior variance
was constant, normalizing to achieve any arbitrary (and valid) prior envelope
c(x) is straightforward: the constant c is replaced by the function c(x) (for
instance in (5)). For example, if the prior variance of a model linear in the
inputs was desired, c(x) would be a quadratic form.

The way basis functions are chosen needs further investigation given that
their shape is altered by normalization. For example, one could now consider
using exponential basis functions, knowing that they will be bounded after nor-
malization.

A Predictive distribution and evidence

All that is needed to make predictions with a finite linear model in general and
with the RVM in particular, is the posterior over the M dimensional weights
vector:

p(w|y) = N (µ,Σ) , with Σ = (Φ>NMB
−1ΦNM+A−1)−1 and µ = ΣΦ>NMB

−1y ,
(12)

where B = σ2IN is a unit matrix of size N proportional to the variance of the
measurement noise σ2. Given a new test input x∗ we first evaluate the response
of all M basis functions Φ∗M , and use the posterior over the weights to obtain
the mean and the variance of the Gaussian predictive distribution:

E(f(x∗)) = Φ∗Mµ , and Var(f(x∗)) = Φ∗MΣΦ>∗M . (13)

Although the normalized model we are proposing contains a weight process
w0(x), to make predictions we only need to compute the posterior over the
M weights associated to the original basis functions. The posterior is again
Gaussian, with mean and covariance very similar to those of the RVM:

Σ̃ = (Φ̃>NMB̃
−1Φ̃NM + c−1A−1)−1 and µ̃ = Σ̃Φ̃>NMB̃

−1y , (14)

but with a new definition of the diagonal noise variance matrix B̃ = σ2IN +
ca0D

−1, and where the normalized basis functions are used Φ̃NM = D−1/2ΦNM .
We remind that D = diag(d(x1), . . . , d(xN )) with d(x) = a0 +

∑M
m=1 amφ

2
m(x).
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In our proposed model, the mean and the variance of the predictive distribution
are given by:

E(f(x∗)) = Φ̃∗Mµ̃ , and Var(f(x∗)) = Φ̃∗MΣ̃Φ̃>∗M +
ca0

d(x)
. (15)

Although the expression for the predictive mean remains unchanged (up to
normalization), the predictive variance gets an additional additive term that
comes from the modulated white noise process.

For our model the evidence is an N -variate Gaussian distribution with zero
mean, and covariance given by C̃ = Φ̃NMAΦ̃>NM + B̃. Using the matrix inversion
lemma, the negative log evidence can be written as:

L =
1
2

[
N log(2π)+log |cA|+log |B̃|−log |Σ̃|+y>B̃−1y−y>B̃−1Φ̃NMΣ̃Φ̃>NMB̃

−1y
]
.

(16)
The computational cost of evaluating the evidence is NM2, as is that of com-
puting its gradients with respect to the prior variances of the weights A, the
prior variance a0 of the w0 process, the variance of the output noise σ2, the
prior overall variance of the function c, and the lengthscale λ of the isotropic
Gaussian basis functions φm(x) = exp(−|x− xm|2/λ2).
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[6] C. E. Rasmussen and J. Quiñonero-Candela. Healing the relevance vector machine
by augmentation. In International Conference on Machine Learning, 2005.

[7] S. Amari and S. Wu. Improving support vector machine classifiers by modifying
kernel functions. Neural Networks, 12(6):783–789, 1999.
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